期刊文献+

基于广义UT变换的交互式多模型粒子滤波算法 被引量:9

Interacting Multiple Model Particle Filtering Algorithm Based on Generalized Unscented Transformation
下载PDF
导出
摘要 针对粒子滤波中重采样过程与优化提议分布的处理方式导致的粒子溃退和算法实时性下降问题,通过广义UT变换原理和卡尔曼滤波预测更新机制的引入,实现当前量测信息对于状态估计结果的直接优化,给出了一种基于广义UT变换的粒子滤波算法.另外,将改进后算法与交互式多模型相结合,进而提出了一种基于广义UT变换的交互式多模型粒子滤波算法.理论分析和仿真结果表明:新算法在计算复杂度方面与标准粒子滤波相近,在滤波精度方面优于标准粒子滤波及其改进算法. To solve the particles impoverishment and the real-time decline caused by re-sampling and the proposal distribution optimization,a novel particle filtering algorithm based on generalized unscented transformation is proposed.The generalized unscented transform and the one-step state prediction and observation update of Kalman filter are introduced to realize the optimization of state estimation by the latest observation information.Then,by means of combining the improved algorithm with interacting multiple model,the interacting multiple model particle filtering algorithm based on generalized unscented transformation is proposed.The theoretical analysis and experimental results show that the new algorithm is close to the standard particle filter in computational complexity and superior to the standard particle filter and its improved algorithms in precision.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1443-1448,共6页 Acta Electronica Sinica
基金 国家自然科学重点项目(No.60634030) 国家自然科学基金(No.60702066) 高等学校博士学科点专项科研基金(No.20060699032)
关键词 混合系统 粒子滤波 交互式多模式 广义UT变换 hybrid system particle filtering interacting multiple model generalized unscented transformation
  • 相关文献

参考文献14

  • 1Rapoport I,Oshman Y.Efficient fault tolerant estimation using the IMM methodology[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(2):492-508. 被引量:1
  • 2Sathyan T,Sinha A,Kirubarajan T.Passive geolocation and tracking of an unknown number of emitters[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):740-750. 被引量:1
  • 3Biom H A P,Bloem E A.Exact Bayesian and particle filtering of stochastic hybrid systems[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):55-70. 被引量:1
  • 4Boers Y,Driessen J N.Interacting multiple model particle filter[J].IEE Proceedings Radar Sonar Navigation,2003,150(5):334-349. 被引量:1
  • 5Morelande M R,Challa S.Maneuvering target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41 (1):252-270. 被引量:1
  • 6Cappe O,Godsill S J,Moulines E.An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE,2007,95(5):899-924. 被引量:1
  • 7Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Graussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188. 被引量:1
  • 8Boric M,Djuric P M,Hong S J.Re-sampling algorithms and architectures for distributed particle filters[J].IEEE Transactions on Signal Processing,2005,53(7):2442-2450. 被引量:1
  • 9Ristic B,Arulampalam M S,Gordon N.Beyond the Kalman Filter:Particle Filters for Tracking Applications[M].Boston:Artech House Publishers,2004.87-101. 被引量:1
  • 10Der Merwe R V,Doucet A,N De Freitas,et al.The Unscented Particle Filter[R].Cambridge:Cambridge University Press,2001. 被引量:1

同被引文献96

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部