期刊文献+

基于多传感器粒子权重优化的两级Rao-Blackwellized粒子滤波算法

Two-stage Rao-Blackwellised particle filter based on multi-sensor particle weight optimization
下载PDF
导出
摘要 针对粒子滤波(PF)计算量大、粒子退化以及缺乏对多传感器量测系统状态估计的适用性等问题的综合处理,提出了一种基于多传感器粒子权重优化的两级Rao.Black.wellized粒子滤波(RBPF)算法。该算法首先采用Rao—Blackwellized建模技术实现对被估计系统状态演化过程的建模,并结合加权融合策略完成多传感器量测对于粒子权重的优化。其次,通过两级预测更新机制的构建和引入,实现最新量测信息对于当前时刻粒子估计结果的修正。另外,考虑到重采样后粒子多样性枯竭问题,在滤波结果中蕴含冗余和互补信息的提取和利用的基础上,给出了一种粒子多样性增强方法。理论分析和仿真实验验证了此算法的可行性和有效性。 Aiming at the comprehensive treatment of particle filters' problems such as large amount of calculations, particle degeneration, and lack of applicability to state estimation for multi-sensor measurement systems, a novel two- stage Rao-Blackwellised particle filter algorithm based on multi-sensor particle weight optimization is proposed. The new algorithm functions as below: Firstly, the Rao-Blackwellised modeling technology is adopted to model the state evolution process of a system needing to estimate, and the weighted fusion strategy is used to optimize the particles' weights by combining with multi-sensor measurement information. Next, through the construction and introduction of a two-stage prediction update mechanism, the estimated result of a current particle is modified by the latest meas- urement information. In addition, in view of the diversity exhaustion of particles from re-sampling, a new method for enhancement of particle diversity is given by means of the extraction and utilization of redundancy and comple- mentary information from the current filter result. The theoretical analysis and experimental results show the feasi- bility and efficiency of the proposed algorithm.
出处 《高技术通讯》 CAS CSCD 北大核心 2012年第11期1207-1212,共6页 Chinese High Technology Letters
基金 国家自然科学基金(60972119,61170243),河南省创新人才培养计划(114100510001)和河南省青年骨干教师资助计划(2010GGJS-041)资助项目.
关键词 多源信息融合 非线性估计 Rao-Blackwellized粒子滤波(RBPF) 权重优化 multi-source information fusion, nonlinear estimation, Rao-Blackwellised particle filter ( RBPF),weights optimization
  • 相关文献

参考文献15

  • 1梁彦,潘泉,杨峰等.复杂系统的现代估计理论及应用.北京:科学出版社,2009. 2-4. 被引量:1
  • 2Zhai Y, Yeary M. Implementing particle filters with me-tropolis-hastings algorithms. In: Proceedings of the Re-gion 5 Conference : Annual Technical and LeadershipWorkshop, Oklahoma, USA, 2004. 149-152. 被引量:1
  • 3祝继华,郑南宁,袁泽剑,张强.基于中心差分粒子滤波的SLAM算法[J].自动化学报,2010,36(2):249-257. 被引量:30
  • 4胡振涛,潘泉,杨峰.基于广义UT变换的交互式多模型粒子滤波算法[J].电子学报,2010,38(6):1443-1448. 被引量:9
  • 5Li H W,Wang J,Su H T. Improved particle filter basedon differential evolution. Electronics Letters, 2011, 47(9). : 1078-1079. 被引量:1
  • 6Kim J, Park C,Kweon I S. Visual tracking for non-rigidobjects using Rao-Blackwellized particle filter. In: Pro-ceedings of the 2010 IEEE International Conference onRobotics and Automation, Anchorage, USA, 2010,45374544. 被引量:1
  • 7Morelande M R,Gordon N. Rao-Blackwellised variablerate particle filters. In: Proceedings of the 12th Interna-tional Conference on Information Fusion, Washington,USA,2009. 1-8. 被引量:1
  • 8Wackerly D 0,Mendenhall W,Scheaffer R L. AdvancedMathematical Statistics. California : Brooks/Cole Publish-ing Company, 2007. 213-218. 被引量:1
  • 9LiLQ,JiHB, Luo J H. The iterated extended Kalmanparticle filter. In : Proceedings of the 2005 IEEE Interna-tional Symposium on Communications and InformationTechnology, Beijing, China, 2005. 1213-1216. 被引量:1
  • 10Shi Y,Han C Z, Lian F. The iterated divided differencefilter. In: Proceedings of the IEEE International Confer-ence on Automation and Logistics, Qingdao, China,2008. 1799-1802. 被引量:1

二级参考文献32

  • 1Smith R, Self M, Cheeseman P. A stochastic map for uncertain spatial relationships. In: Proceedings of the 4th International Symposium of Robotics Research. California, USA: MIT Press, 1987. 467-474. 被引量:1
  • 2Thrun S, Burgard W, Fox D. Probabilistic Robotics. Cambridge: MIT Press, 2005. 被引量:1
  • 3Durrant-Whyte H F, Bailey T. Simultaneous localization and mapping: part Ⅰ. IEEE Transactions on Robotics and Automation, 2006, 13(2): 99-108. 被引量:1
  • 4Bailey T, Durrant-Whyte H F. Simultaneous localization and mapping: part Ⅱ. IEEE Transactions on Robotics and Automation, 2006, 13(2): 108-117. 被引量:1
  • 5Dissanayake M W M G, Newman P, Clark S, Durrant- Whyte H F, Csorba M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 2001, 17(3): 229-241. 被引量:1
  • 6Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments [Ph.D. dissertation], University of Sydney, Australia, 2002. 被引量:1
  • 7Doucet A. de Freitas N, Murphy K P, Russell S J. Rao- Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. Stanford, USA: Morgan Kaufmann Publishers. 2000. 176-183. 被引量:1
  • 8Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI National Conference on Artificial Intelligence. Edmonton, Canada: Springer, 2002. 1-6. 被引量:1
  • 9Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence. Acapulco, Mexico: Springer, 2003. 1151-1156. 被引量:1
  • 10Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482. 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部