期刊文献+

基于粒子群算法的室内环境节能优化控制 被引量:6

Indoor Environment Energy Conservation Optimization Control Based on PSO
下载PDF
导出
摘要 目前建筑室内环境节能优化控制大多侧重于室内空调、照明等各分系统的独立优化控制,但从能量消耗角度来考虑,如何兼顾各个系统的耗能,使整体耗能最小是最节能的。针对这一问题,提出了一种基于粒子群算法的节能综合控制,通过寻找窗帘开启的最优角度,调节高精度电动窗帘满足室内光环境需求,降低照明能耗,同时将日射得热引起的空调冷负荷降到最低,使整体效能最佳,从而提高系统的效率。实验结果表明,该控制方案综合考虑了照明能耗和空调能耗的合理分配,能为建筑物整体能耗节约了大约30%的能耗。 At present building indoor environment energy conservation optimization control mostly to stress on the indoor air conditioning,the illumination and so on various subsystems' independent optimized control,but how to give dual attention to each system's consuming energy,causes the whole to consume energy slightly is most conserves energy.In view of this question,proposed one kind of energy conservation integrated control based on PSO,through seeks for the most superior angle of window 's blind opening,the adjustment high accuracy electrically operated window blind meets the need of indoor light environment,reduces the illumination energy consumption,simultaneously shoots the air conditioning cold load,causes the overall potency to be best,thus raises system's efficiency.The experimental result indicated that this control plan overall evaluation illumination energy consumption and the air conditioning energy consumption's rational distribution,could save about 30% energy consumptions for the building overall energy consumption.
出处 《微计算机信息》 2010年第7期159-161,共3页 Control & Automation
基金 基金申请人:叶倩 项目名称:"十一五"国家科技支撑计划-建筑室内环境综合评估技术与智能监控系统研究 基金颁发部门:国家科技部(2006BAJ02A06)
关键词 建筑节能 粒子群算法 模糊控制 building energy conservation particle swarm optimization fuzzy control
  • 相关文献

参考文献8

二级参考文献23

  • 1敬勇.天然气发动机仿人智能模糊混合控制器的研究[J].微计算机信息,2005,21(1):3-4. 被引量:14
  • 2刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 3朱林根.21世纪建筑电气设计手册[M].北京:中国建筑工业出版社,2000(3).. 被引量:2
  • 4清华大学 西安冶金建筑学院 同济大学 等.空调调节[M].北京:中国建筑工业出版社,1986.. 被引量:1
  • 5贾俊星.[D].天津:天津大学,2001. 被引量:1
  • 6QIN S J,BADGWELL T A.A Survey of Industrial Model Predictive Control Technology[ J ].Control Engineering Practice,2003,733-764. 被引量:1
  • 7RAWLINGS J B.Tutorial Overview of Model Predictive Control[J].IEEE Control Systems Magazine,2000,38-52. 被引量:1
  • 8WRIGHT S J.Applying New Optimization Algorithms to Model Predictive Control[ C ]//Chemical Process Control:Assessment and New Directions for Research.AIChE Symposium Series 316,1997:147-155. 被引量:1
  • 9ALLGOWER F,BOCK H G,SCHLODER J P,et al.Computation and Performance Assessment of Nonlinear Model Predictive Control[ C ]//Proceeding of the 41th IEEE Conference on Decision and Control.2003. 被引量:1
  • 10KENNEDY J,EBERHART R C.Particle Swarm Optimization[ C ]//Proceeding of IEEE Int' l Conference on Neural Networks.1995:1942-1948. 被引量:1

共引文献63

同被引文献50

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部