期刊文献+

基于粒子群优化算法的集成电路无网格布线 被引量:6

Gridless net routing of the integrated circuit with the particle swarm optimization algorithm
下载PDF
导出
摘要 提出了一种改进的粒子群优化算法,并将其应用于集成电路布线,建立了相应的优化模型。对于给定的版图布线平面,该算法结合无网格算法的思路,首先由障碍图形和各个线网的端点生成一个包含最短路径的无网格访问点阵,然后根据粒子群算法的思路建立初始粒子位置矩阵,并利用其全局寻优功能找到当前布线路径上的最短路径. A particle swarm optimization algorithm is presented for the layout of IC design. Particle swarm optimization based on swarm intelligence is a new evolutionary computational tool and is successfully applied in function optimization, neural network design, classification, pattern recognition, signal processing, robot technology and so on. A modified algorithm is presented and applied to the layout of IC design. For a given layout plane, first of all, this algorithm generates the corresponding grid group by barriers and nets'ports with the thought of gridless net routing, establishes the initialization fuzzy matrix, then utilizes the global optimization character to find out the best layout route only if it exits. The results of model simulation indicate that the PSO algorithm is feasible and efficient in IC layout design.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第1期34-37,86,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60376023)
关键词 粒子群优化算法 无网格布线 版图布局优化 Prufer数 particle swarm optimization algorithm gridless net routing layout optimization Prufer number
  • 相关文献

参考文献7

二级参考文献80

  • 1刘淳安,王宇平.一种基于新的模型的多目标存档遗传算法[J].计算机工程与应用,2005,41(4):43-45. 被引量:4
  • 2敬勇.天然气发动机仿人智能模糊混合控制器的研究[J].微计算机信息,2005,21(1):3-4. 被引量:14
  • 3Kalyanmoy Deb.Multi-Objective Optimization using Evolutionary Algorithms[M].Chichester : John Wiley & Sons, Ltd, 2001. 被引量:1
  • 4J D Knowles,D W Come.Approximating the Non-Dominated Front Using the Pareto Archived Evolutionary Strategy[J].Evolutionary Computation,2000;8(2) : 149-172. 被引量:1
  • 5R Eberhart,J Kennedy.A New Optimizer Using Particle Swarm Theory[C].In:Proc of the 6th Int Symposium on Micro Machine and Human Science. Piscataway,NJ:IEEE Service Center,1995:39-43. 被引量:1
  • 6J Kennedy,R Eberhart.Particle Swarm Optimization[C].In :IEEE Int'l Conf on Neural Networks,Perth, Australia, 1995. 被引量:1
  • 7Eckart Zitzler, Kalyanmoy Deb, Lothar Thele.Comparison of Multi-Objective Evolutionary Algorithms :Empirical Results[J].Evolutionary Computation, 2000; 8 (2) : 1-24. 被引量:1
  • 8Shi Y,Eberhart R C,Particle Swarm Optimization:Developments,Applications and Resource[C].In:Proc of Congress on Evolutionary Computation, NJ: Piscataway Press, 2001 : 81 -86. 被引量:1
  • 9V Ramasubramanian,K K Paliwal.An Efficient Approximation-Elimination Algorithm for Nearest-Reighbor Search Based on A Spherical Distance Coordinate Formulation[J].Pattern Recognit, Lett, 2002 ,13 (7) : 471 -480. 被引量:1
  • 10Deb K.Multiobjective Genetic Algorithms: Problem Difficulties and Construction of Test Problem[J].Evolutionary Computation, 1999 ; 7 (3) : 205-230. 被引量:1

共引文献169

同被引文献57

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部