期刊文献+

改进的粒子群变异算法在建筑节能优化中的应用 被引量:6

Application of Improved Particle Swarm Mutation Algorithm to Building Energy-Saving Optimization
下载PDF
导出
摘要 由于建筑能耗模型多峰值的特点,使用粒子群算法处理建筑节能优化问题时,容易在局部最优区域过早收敛,将分布式的变异算子与粒子群算法结合可对此进行改进。文中研究了4种现有的粒子群变异算法,针对其优化效果的不足,对发生变异的具体操作进行了改进,使用测试函数验证了其有效性,并将其应用到建筑节能优化问题当中。经过大量实验发现,对于文中的建筑节能优化问题,改进的粒子群变异算法相对于现有的粒子群变异算法,其目标函数(即建筑的太阳能辐射得热量)的平均值下降了1.3%以上,收敛率至少提高了3倍,寻优效果有明显的改善,证明所提出的改进算法具有有效性和普适性,可以在一般的建筑节能优化问题中推广。 When particle swarm optimization algorithm is used in the building energy-saving optimization,it is easy to converge untimely in the local optima due to the multi-peak characteristic of the building energy model.The combination of the distributed mutation operator and particle swarm algorithm can provide a solution to this pro-blem.In this paper,4 existing particle swarm mutation algorithms were studied.Aiming at the problem of low effects of optimization,the specific operations of the mutations were improved,and the effectiveness of 4 improved algorithms was verified by test functions.Then,they were applied to a building energy-saving optimization case.Experi-mental results show that,as compared with the existing particle swarm mutation algorithms,the improved algorithm can decrease the average value of object function by 1.3%at least and increase the convergence rate by over 3 times,which means that the optimization effect is obviously improved.Thus,it is concluded that the improved algorithms is effective and applicable in general building energy-saving optimization.
作者 刘刚 王漠 董伟星 黄文龙 LIU Gang;WANG Mo;DONG Weixing;HUANG Wenlong(School of Architecture,Tianjin University,Tianjin 300072,China;Tianjin Key Laboratory of Architectural Physics and Environmental Technology,Tianjin University,Tianjin 300072,China;International Engineering Institute,Tianjin University,Tianjin 300072,China;China Construction Engineering Design Group Corporation Limited,Beijing 100037,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第10期48-55,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家重点研发计划项目(2016YFC0700200) 国家自然科学基金资助项目(51628803)。
关键词 建筑节能优化 粒子群变异算法 算法改进 计算机辅助建筑设计 building energy-saving optimization particle swarm mutation algorithm algorithm improvement computer-aided architecture design
  • 相关文献

参考文献6

二级参考文献17

共引文献5

同被引文献73

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部