期刊文献+

支撑向量机在高光谱遥感图像分类中的应用 被引量:10

Application of Support Vector Machines in the Classification of Hyper-spectral Remote Sensing Image
下载PDF
导出
摘要 高光谱遥感图像具有维数高的特点,当样本较少时,利用传统的统计识别方法分类,分类精度低。可支撑向量机(SVM)能解决小样本、高维、非线性分类问题。采用归一化法对原始图像做预处理,再分析不同的SVM核函数对分类精度的影响;并把SVM与最小距离法,马氏距离法等的分类结果进行比较。结果表明SVM的核函数类型对分类正确率影响不大,其分类精度高于传统的统计识别方法。 The characteristic of hyper- spectral remote sensing data is high dimensional. The accuracy of traditional classification methods is always unsatisfactory. Support vector machine (SVM) is a good method for solving limited sample, high dimensional, and nom -linear classification problem. The image data are preprocessed by Image normalization method, the influences of different kernel functions on classification accuracy are analyzed, and the classification results by SVM are compared with that of other methods ( such as Minimum Distance method, Mahalanobis Distance Method). Experiment results show that the classification accuracy is almost identical for different kernel functions, and VM method has better classification and recognition accuracy than traditional algorithms.
作者 许将军 赵辉
出处 《计算机仿真》 CSCD 北大核心 2009年第12期164-167,共4页 Computer Simulation
关键词 高光谱遥感 图像预处理 支撑向量机 核函数 Hyper - spectral remote sensing Image preprocessing Support vector machines (SVM) Kernel function
  • 相关文献

参考文献6

  • 1宋庆瑞,蒋平安.遥感技术导论[M].北京:科学出版社,2004.332-333. 被引量:1
  • 2边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000.. 被引量:67
  • 3C Codes, V Vapnik. Support Vector Networks [ J ]. Machine Learning, 1995,20:273 - 297. 被引量:1
  • 4B Boser, I Guyon, V Vapnik. A Training Algorithm for Optimal Margin Classifiers[ J]. PiLLshurah: ACM Press, 1992. 被引量:1
  • 5陈宝林.最优化理论与算法[M].北京:清华大学出版社,1996.85-90. 被引量:1
  • 6王亮申,欧宗瑛,朱玉才,侯杰,于京诺.基于SVM的图像分类[J].计算机应用与软件,2005,22(5):98-99. 被引量:18

二级参考文献10

  • 1Alberto Del Bimbo and Pietro Pala.Visual Image Retrieval by Elastic Matching of User Sketches.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(2):121~132. 被引量:1
  • 2Smith J R,Chang S F.Transform feature for texture classification and discrimination in large image database.In:Proc of IEEE Int'l Conf on Image Processing.Austrin,Texas,1994. 被引量:1
  • 3Guodong Guo,Stan Z.Li,Kap Luk Chan.Support Vector Machines Recognition.Image and Vision Computing ,19(2001):631~638. 被引量:1
  • 4Pierre M L Drezet,Robert F Harrison.A new method for sparsity control in support vector classification and regression.Pattern recognition,2001,34:111~125. 被引量:1
  • 5Vapnik V,Lerner A.Pattern Recognition Using Generalized Portrait.Automation and Remote Control.1963,24(6):774~780. 被引量:1
  • 6S.Amari,S Wu.Improving Support Vector Machine Classifiers by Modifying Kernel Functions.Neural Networks 12(199):783~789. 被引量:1
  • 7Victor L Brailovsky,Ofir Barzily,Rabin Shahave.On Global Local and Neighborhood Kernels for Support Vector Machines.Pattern Recognition Letters,20(1999):1183~1190. 被引量:1
  • 8Courant R,Hibert B.Methods of mathematical physics.Vol.1.New York:Widely-interscience,1953. 被引量:1
  • 9王亮申.[D].大连:大连理工大学,2003. 被引量:1
  • 10金连文,徐秉铮.基于多级神经网络结构的手写体汉字识别[J].通信学报,1997,18(5):21-27. 被引量:19

共引文献83

同被引文献63

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部