期刊文献+

基于LISOMAP的相关向量机入侵检测模型 被引量:4

Intrusion detection model based on LISOMAP relevant vector machine
下载PDF
导出
摘要 针对现有入侵检测模型分类检测精度低、误报率高的问题,提出一种基于地标等距映射(LISOMAP)的相关向量机(RVM)入侵检测分类模型。首先采用LISOMAP对训练样本中的数据进行非线性降维,结合深度优先搜索(DFS)参数优化的RVM进行分类检测。结果表明,该模型与基于主成分分析(PCA)法的支持向量机(SVM)、基于LISOMAP的SVM模型相比,在保证一定检测率的情况下,误报率有了明显下降。 Concerning low classification accuracy and high false alarm rate of current intrusion detection models, an intrusion detection classification model based on Landmark ISOmetric MAPping (LISOMAP) and Deep First Search (DFS) Relevant Vector Machine (RVM) was proposed. The LISOMAP was adopted to reduce the dimension of the training data, and RVM based on the DFS was used for classification detection. Compared with the Principal Components Analysis (PCA)- Supported Vector Machine (SVM), the experimental results indicate that the LISOMAP-DFSRVM model has lower false alarm rate with almost the same detection rate.
出处 《计算机应用》 CSCD 北大核心 2012年第9期2606-2608,共3页 journal of Computer Applications
基金 国家科技重大专项基金资助项目(2009ZX03004-002)
关键词 入侵检测 主成分分析 支持向量机 地标等距映射 相关向量机 深度优先搜索 intrusion detection Principal Component Analysis (PCA) Support Vector Machine (SVM) Landmark ISOmetric MAPping (LISOMAP) Relevant Vector Machine (RVM) Deep First Search (DFS)
  • 相关文献

参考文献14

二级参考文献112

共引文献120

同被引文献65

  • 1林杨,刘贵全,杨立身.基于改进SVM方法的入侵检测[J].计算机工程,2007,33(14):151-153. 被引量:8
  • 2Lin Shih-Wei, Ying Kuo-Ching, Chen Shih-Chieh, Lee Zne-Jung. Particle swarm optimization for parameter de- termination and feature selection of support vector ma- chines [J]. Expert Systems with Applications, 2008,35(4): 1817-1824. 被引量:1
  • 3K. Srujan Raju. Significance of Genetic'Algorithm in In- trusion Detection System [J]. International Journal of Computer Science and Security (IJCSS), 2011,5(3): 1-8. 被引量:1
  • 4范治军.基于数据挖掘的入侵检测研究[D].大连理工大学,2012. 被引量:1
  • 5Chaivat Jirapummin,Naruemon Wattanapongsakom.Hybrid Neural Net-works for Intrusion Detection System[ C].ITC-CSCC 2012 Proceedings,2012:929-932. 被引量:1
  • 6Shakhatreh,Ala' Yaseen Ibrahim.A Review of clustering techniques based on machine learning approach in intrusion detection systems [ J ].International Journal of Computer Science Issues,2011,8(5):373-381. 被引量:1
  • 7Novosad T,PiatosM J,Snasel:,et al.Fast intrusion detection system based on Flexible Neural Tree[ C ]//Iuformation Assurance and Securi-ty(IAS),2010 Sixth International Conference on.IEEE,2010:106-111. 被引量:1
  • 8Kapi Kumar Gupta,Baikunth Nath,Ramamohanasao kotaglrl.Lee Hart-sung,Song Jiyoung,Intrusion detection system based on multi-class SVM [ J].International Journal of Electronic Security and Digital Forensics,2011,12(5):511-519. 被引量:1
  • 9Layered Approach Using Conditional Random Fields for Intrusion De-tection[ J].IEEE Transactions on Dependable and Secure Computing,2010,7(1):35-39. 被引量:1
  • 10史珊姗.基于决策树c4.5算法的网络入侵检测研究[D].苏州大学,2012. 被引量:1

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部