摘要
针对现有入侵检测模型分类检测精度低、误报率高的问题,提出一种基于地标等距映射(LISOMAP)的相关向量机(RVM)入侵检测分类模型。首先采用LISOMAP对训练样本中的数据进行非线性降维,结合深度优先搜索(DFS)参数优化的RVM进行分类检测。结果表明,该模型与基于主成分分析(PCA)法的支持向量机(SVM)、基于LISOMAP的SVM模型相比,在保证一定检测率的情况下,误报率有了明显下降。
Concerning low classification accuracy and high false alarm rate of current intrusion detection models, an intrusion detection classification model based on Landmark ISOmetric MAPping (LISOMAP) and Deep First Search (DFS) Relevant Vector Machine (RVM) was proposed. The LISOMAP was adopted to reduce the dimension of the training data, and RVM based on the DFS was used for classification detection. Compared with the Principal Components Analysis (PCA)- Supported Vector Machine (SVM), the experimental results indicate that the LISOMAP-DFSRVM model has lower false alarm rate with almost the same detection rate.
出处
《计算机应用》
CSCD
北大核心
2012年第9期2606-2608,共3页
journal of Computer Applications
基金
国家科技重大专项基金资助项目(2009ZX03004-002)
关键词
入侵检测
主成分分析
支持向量机
地标等距映射
相关向量机
深度优先搜索
intrusion detection
Principal Component Analysis (PCA)
Support Vector Machine (SVM)
Landmark ISOmetric MAPping (LISOMAP)
Relevant Vector Machine (RVM)
Deep First Search (DFS)