期刊文献+

支持向量机推广能力估计方法比较 被引量:11

Comparison in Generalization Performance of Support Vector Machine Algorithms
下载PDF
导出
摘要 支持向量机是一种新的机器学习算法,与其它学习算法相比,它的最大优点是基于结构风险最小化原则,因而能够保证推广能力。推广能力估计是机器学习中的一个重要问题,是实现自适应调整、参数选择、模型选择的等方法的基础。本文详细比较当前较有影响的几种推广能力估计方法,指出了这些方法适应范围和优缺点,并结合各种方法的原理讨论了推广能力估计可能的发展方向。 Support Vector Machine (SVM) is a novel machine learning algorithm. Comparing with other algorithms, its distinct advantage is to utilize the Structure Risk Minimum rule as to guarantee its generalization performance. How to estimate generalization performance is an important problem in machine learning. Comparisons of some known algorithms are presented in the paper, advantages and disadvantages are analyzed and the way to further improvement is discussed.
出处 《电路与系统学报》 CSCD 2004年第4期86-91,96,共7页 Journal of Circuits and Systems
基金 "十.五"军事通信预研基金资助项目(4100104030)
关键词 支持向量机 (Support VECTOR Machine SVM) 推广能力估计 方法比较 Support Vector Machine (SVM) estimating generalization performance method comparing
  • 相关文献

参考文献14

  • 1Vladimir N Vapnik. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, Inc, 2000. 被引量:1
  • 2Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition [M]. Boston: Kluwer Academic Publishers,. 1999. 被引量:1
  • 3Grace Wahba. An Introduction to Model Building with Reproducing Kernel Hilbert Spaces [R/OL]. TECHNICAL REPORT NO.1020, available at http://www.stat.wisc.edu/?wahba. 2000. 被引量:1
  • 4Lunts A, Brailovskiy V. Evaluation of Attributes Obtained in Statistical Decision Rules [J]. Engineering Cybernetics, 1967, 3: P98-109. 被引量:1
  • 5VladimirNVapnik 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.9. 被引量:10
  • 6Vapnik V, Chapelle O. Choosing Multiple Parameters for Support Vector Machine [J]. Machine Learning, 2002, 46(1-3). 被引量:1
  • 7Jaakkola T, Haussler D. Probabilistic Kernel Regression Models [A]. Proceedings of the Seventh Workshop on AI and Statistics [C]. San Francisco, 1999. 被引量:1
  • 8Wahba G, Lin Yi, et al. Generalized Approximate Cross Validation for Support Vector Machines or Another Way to Look at Margin-like Quantities [A]. Advances in Large Margin Classifiers [C]. MIT Press. 2000, 297-209. 被引量:1
  • 9Opper M, Winther O. Gaussian Processes and SVM: Mean Field and Leave-one-out [A]. Advances in Large Margin Classifiers [C]. Cambridge, MA: MIT Press, 2000, 311-326. 被引量:1
  • 10Joachims T. Estimating the Generalization Performance of a SVM Efficiently [R]. LS VIII-Report 25, University Dortmund, Germany, 1999. 被引量:1

共引文献9

同被引文献93

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部