期刊文献+

基于PCA与属性权重模糊聚类的入侵检测方法 被引量:2

Intrusion Detection Based on PCA and Feature-weighted Fuzzy Clustering
下载PDF
导出
摘要 针对入侵检测数据集中存在大量冗余信息及传统聚类算法的效果不佳,提出了结合主成分分析与属性权重模糊聚类算法的入侵检测方法。该方法分为特征提取和模糊聚类两阶段,使用主成分分析进行特征提取、消除冗余属性;将经主成分分析后得到新成分的贡献率作为聚类算法中属性的权重值,实现了基于属性权重的模糊聚类。在KDD-CUP99数据集中的实验结果表明,该方法能有效地降低检测训练时间和提高检测正确率。 In order to overcome the shortcomings that lots of redundancy information exists in intrusion detection data sets and classical clustering algorithms perform not perfectly, a new intrusion detection approach which combines the principle component analysis with feature-weighted fuzzy clustering is presented. The approach is splited into two steps,including feature extraction and fuzzy clustering. The principle component analysis is used to extract features and eliminate the redundancy attributes. The contribution proportion obtained from the former is used as the feature weight in the clustering algorithm, which forms the feature-weighted fuzzy clustering. Experiments on the data sets of KDDCUP99 show that this algorithm can obviously reduce the training time and meanwhile improve the accuracy of intrusion detection.
作者 陆虎
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2008年第2期67-70,共4页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 江苏省信息产业厅基金资助项目(2005106)
关键词 主成分分析 贡献率 模糊聚类 入侵检测 principle component analysis contribution proportion fuzzy clustering intrusion detection
  • 相关文献

参考文献10

二级参考文献33

  • 1谷雨,郑锦辉,孙剑,徐宗本.基于独立成分分析和支持向量机的入侵检测方法[J].西安交通大学学报,2005,39(8):876-879. 被引量:7
  • 2[5]TUT M,SU S H,SHYU H C.A new look at IHS-like image fusion methods[J].Information Fusion,2001,2(3):177-186. 被引量:1
  • 3[6]CHEN Yixin,WANG J Z.A region-based fuzzy feature matching approach to content-based image retrieval[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(9):1252-1267. 被引量:1
  • 4Lee W. A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems [D]. Columbia University,1999. 被引量:1
  • 5Liu Yongguo, Chen Kefei, Liao Xiaofeng, et al. A Genetic Clustering Method for Intrusion Detection[J]. Pattern Recognition, 2004,37(5):927-942. 被引量:1
  • 6Glover F, Laguna M. Tabu Search[M]. Boston: Kluwer Academic Publishers, 1997. 被引量:1
  • 7Abdinnour-Helm S. A Hybrid Heuristic for lhe Uncapaeitated Hub Location Problem[J]. European Journal of Operational Research,1998, 106(3): 489-499. 被引量:1
  • 8Ting Chuankang, Li Shengtun, Lee Chungnan. On the Harmonious Mating Strategy Through Tabu Search[J]. Information Sciences, 2003,156(3-4): 189-214. 被引量:1
  • 9Z.H.Zhou.J.X.Wu.W.Tang.Ensembling neural networks:Many could be better than all? Artificial Intelligence,2002,137 (1/2):239~263 被引量:1
  • 10Y.Liu,X.Yao.Ensemble learning via negative correlation.Neural Networks,1999,12(10):1399~1404 被引量:1

共引文献70

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部