期刊文献+

高光谱数据降维技术研究 被引量:12

Research on Dimensionality Reduction Technology of Hyperspectral Data
下载PDF
导出
摘要 高光谱数据对地物具有更高的光谱分辨率,但是由于高光谱数据巨大的数据量以及相邻波段之间的强相关性,导致了对这种数据的许多分类方法达不到应有的效果,从而在某种程度上制约了其广泛的应用。研究表明,特征提取的理论与方法对高光谱信息的优化处理是十分有效的。实验结果表明,在一定的分类精度范围内,减低维数而不丢失信息,可以提高分类器的效能,实现高维遥感数据的优化处理和高效利用。 Hyperspectral data have a high spectral resolution for the objects of the earth. However, many analysis approaches of hyperspectral data do not provide a promising result because of its great data volume and strong correlation between its neighboring bands. Consequently, it restricts the efficiency and broad application of high resolution data. The research indicates that feature extraction is the highly effective theory and method to optimize hyperspectral data and information. The result of experiment shows that with a given precision of classification, the reduction in dimensionality without loss of information improves the classifier performance, and helps to achieve the aims of optimal process and effective utilization of hyperspectral remote sensing data.
出处 《水土保持通报》 CSCD 北大核心 2006年第6期89-91,共3页 Bulletin of Soil and Water Conservation
基金 西北大学2005校内基金 科研启动基金 基础测绘科技项目(146014020201-05)
关键词 特征提取 数据降维 高光谱数据 影像分类 feature extraction reduction of data dimensionality hyperspectral data image classification
  • 相关文献

参考文献5

  • 1赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004,24(5):28-36. 被引量:19
  • 2赵英时等编著..遥感应用分析原理与方法[M].北京:科学出版社,2003:478.
  • 3Jia Xiuping,Richards J A.Segmented Principal Components Transformation for Efficient Hyperspectral Remote Sensing Image Display and Classification[J].IEEE Trans.on Geoscience and Remote Sensing,1999,37(1):538-542. 被引量:1
  • 4Lee C,Landgrebe D A.Decision Boundary Feature Selection for Non_Parametric Classifications[J].IEEE Transactions on System,Man,and Cybernetics,1993,23(2):433-444. 被引量:1
  • 5Lee C,Landgrebe D A.Feature Extraction and Classification Algorithms for High Dimensional Data[D],Electrical Engineering,Purdue University,West Lafayette,Indiana,1992. 被引量:1

二级参考文献25

  • 1Green R. Imaging Spectroscopy and Airborn Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Enviroment, 1998,65:227-248 被引量:1
  • 2Richard L J, Fisher J, Anderson M. Hydice:A Status Report. In Proc. Int. Symp. Spectral Sensing Res. San Diego, CA, 1995:89-92 被引量:1
  • 3Vane G, Green R, Chrien T, et al. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 1993,44:127-143 被引量:1
  • 4Chavez P S, Jr Berlin G L, Sowers L B. Statistical Method for Selecting Landsat MSS Ratios. Journal of Applied Photographic Engineering, 1982,8:23-30 被引量:1
  • 5Junping Zhang, Ye Zhang, Bin Zou, et al. Fusion Classification of Hyperspectral Image Based on Adaptive Subspace Decomposition. ICIP2000 Proceeding, Canada. IEEE Signal Processing Society, 2000,3:472-475 被引量:1
  • 6Zhang Ye, Zhang Junping, Jin Ming, et al. Adaptive Subspace Decomposition and Classificaion for Hyperspectral Images. Chinese Journal of Electronics,2000,9(1):82-88 被引量:1
  • 7Zhang Ye, Mita D Desai, Zhang Junping. Adaptive Subspace Decomposition for Hyperspectral Data Dimensionality Reduction. ICIP99 Proceeding, Japan. IEEE Signal Processing Society, 1999,2:326-329 被引量:1
  • 8Jia Xiuping, Richards J A. Segemted Pricipal Comonpents Transformation for Efficient Hyperspectral Remote-Sensing Image Display and Classification. IEEE Trans. on Geoscience and Remote Sensing, 1999,37(1):538-542 被引量:1
  • 9Luis O Jimenez, David A Landgrebe. Hyperspectral Data Analysis and Supervised Feature Reduction via Projection Pursuit. IEEE Trans. on Geoscience and Remote Sensing, 1999,37(6):2653-2667 被引量:1
  • 10Luis O Jimenez, Landgrebe D A. Projection Pursuit for High Dimensional Feature Reduction: Parallel and Sequential Approaches. Geoscience and Remote Sensing Symp. (IGARSS'95), Florence. Italy.1995. 被引量:1

共引文献18

同被引文献132

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部