期刊文献+

一种基于地物诊断性波谱吸收特征的高光谱遥感图像降维方法 被引量:2

A New Method of Hyperspectral Remote Sensing Image Dimensional Reduction Based on Diagnostic Characteristic of Spectral Absorption
下载PDF
导出
摘要 高光谱遥感数据具有波段数目多、波段宽度窄、数据量庞大、波段间相关性高等特点,在一定程度上为图像的进一步处理和信息提取带来困难。为解决这一问题,在分析已有降维方法的基础上,提出了基于地物诊断性波谱吸收特征的高光谱遥感图像降维方法,将地物的诊断性吸收波谱特征区间作为一个独立的子空间进行处理,尽可能保留地物独有的吸收特征;在此基础上,进行子空间的特征提取和特征选择。为验证该方法的优越性,将其与传统的基于波谱区间的子空间划分方法进行分类对比,研究表明:基于该文方法降维后的图像分类精度更高,丰富了现有降维方法理论,具有一定的实用和推广价值。 Hyperspectral remote sensing data have some unique characteristics that with more channels, narrow-band width, the huge volume of data, the high correlation between bands, which have brought difficulties to a certain extent for the further image processing and information extraction. In order to solve this problem, on the basis of the analysis of the existing dimensional reduction methods, a new method of hyperspectral remote sensing image dimensional reduction based on diagnostic characteristic of spectral absorption was proposed. The method takes the diagnostic features of absorption spectrum range as a separate subspace, as far as possible to retain the unique features of the absorption characteristics. And then the information of sub-space can be extracted and the feature can be selected. To test the advantages of this method, a classification experiment was implemented, and the result showed that the classification accuracy of the dimensional reduced images based on this method is higher. The study enriches the existing dimensional reduced methods,and has a practical and promotional value.
出处 《地理与地理信息科学》 CSCD 北大核心 2009年第1期57-60,共4页 Geography and Geo-Information Science
基金 地球探测与信息技术教育部重点实验室基金项目(2004DTKF003) 成都理工大学青年基金项目(2006QJ17)
关键词 诊断性波谱特征 高光谱 遥感 降维 diagnostic characteristic of spectral hyperspectral remote sensing dimension reduction
  • 相关文献

参考文献14

二级参考文献55

  • 1潘建刚,赵文吉,宫辉力.遥感图像分类方法的研究[J].首都师范大学学报(自然科学版),2004,25(3):86-91. 被引量:32
  • 2裘愉纶.国外成像光谱仪的发展[J].航天返回与遥感,1995,16(3):27-36. 被引量:1
  • 3Green Robert O, Pavri Betina E, Chrien Thomas G. On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6): 1194 - 1203. 被引量:1
  • 4Resmini Ronald G. The categorization of hyperspectral information (HSI) based on the distribution of spectra in hyperspace [ A]. In:Proceedings of SPIE-The International Society for Optical Engineering [ C ], San Diego, California, USA, 2003,5093:581 - 590. 被引量:1
  • 5Zhang Jun-ping, Zhang Ye, Zou Bin, et al. Fusion classification of hyperspectral image based on adaptive subspace decomposition [ A ].In: International Conference on Image Processing [ C ], Vancouver,BC, Canada, 2000,3: 472 - 475. 被引量:1
  • 6Petrie G M, Heasler P G, Warner T. Optimal band selection strategies for hyperspectral data sets [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ]. Seattle, USA,1998,3:1582 - 1584. 被引量:1
  • 7Millette T L. An expert system approach to spectral band selection for remote sensing analysis [ A ]. In: International Geoscience and Remote Sensing Symposium [ C ] , Maryland, USA, 1990: 1285 -1288. 被引量:1
  • 8Chavez P S, Berlin G L, Sowers L B. Statistical method for selecting landsat MSS ratios [ J]. Journal of applied photographic engineering,1982,1(8) :23 -30. 被引量:1
  • 9孙家柄 舒宁 吴泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997.411. 被引量:56
  • 10SERPICO S B, BRUZZONE L. A New Search Algorithm for Feature Selection in Hyperspectral Remote Sensing Images [J]. Technical Report,2001, (2). 被引量:1

共引文献125

同被引文献41

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部