期刊文献+

超谱遥感图像降维方法研究现状与分析 被引量:19

Research and Analysis of Hyperspectral Remote Sensing Image Dimensional Reduction
下载PDF
导出
摘要 随着成像光谱仪的发展 ,超谱遥感图像的研究已进入到一个新的阶段———对获取的超谱数据进行有效处理和利用的阶段。目前的处理方法主要集中在对超谱图像的数值分析处理上 ,比如大气校正、降低数据维数、信息提取、分类与压缩等方面。而超谱图像降维方法的研究是做好后继处理的一个关键步骤 ,降维方式的正确选取与使用 ,对于发展和完善那些针对超谱海量数据和丰富信息特点的算法和软件有极大的好处。文章从波段选择、划分数据源、特征提取和融合等 4个角度对目前超谱图像的各种降维方法进行了综合归纳和分析。力图为超谱图像处理寻找突破点 。 With the development of spectrometer, the research of hyperspectral remote sensing image has come into a new stage-processing and utilizing the acquired image efficiently. Now many processing methods are centered on arithmetic analysis processing of hyperspectral, such as atmosphere correction, dimensional reduction, information extraction, classification, compression, and so on. Whereas dimensional reduction of hyperspectral image is an important step to continue subsequent procedure. To select a dimensional reduction method correctly will affects the arithmetic and software which deal with plenty of data and abundant information of hyperspectral image. This paper generalizes and analyzed various methods from the point of view of band selection, subspace decomposition, feature extraction and fusion both at home and abroad.
机构地区 哈尔滨工程大学
出处 《中国空间科学技术》 EI CSCD 北大核心 2004年第5期28-36,共9页 Chinese Space Science and Technology
关键词 降维 超谱图像 遥感图像 数据源 海量数据 特征提取 信息提取 处理 方法研究 分析 Classification (of information) Feature extraction Image processing Numerical analysis Research Software engineering Spectrometers
  • 相关文献

参考文献25

  • 1Green R. Imaging Spectroscopy and Airborn Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Enviroment, 1998,65:227-248 被引量:1
  • 2Richard L J, Fisher J, Anderson M. Hydice:A Status Report. In Proc. Int. Symp. Spectral Sensing Res. San Diego, CA, 1995:89-92 被引量:1
  • 3Vane G, Green R, Chrien T, et al. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment, 1993,44:127-143 被引量:1
  • 4Chavez P S, Jr Berlin G L, Sowers L B. Statistical Method for Selecting Landsat MSS Ratios. Journal of Applied Photographic Engineering, 1982,8:23-30 被引量:1
  • 5Junping Zhang, Ye Zhang, Bin Zou, et al. Fusion Classification of Hyperspectral Image Based on Adaptive Subspace Decomposition. ICIP2000 Proceeding, Canada. IEEE Signal Processing Society, 2000,3:472-475 被引量:1
  • 6Zhang Ye, Zhang Junping, Jin Ming, et al. Adaptive Subspace Decomposition and Classificaion for Hyperspectral Images. Chinese Journal of Electronics,2000,9(1):82-88 被引量:1
  • 7Zhang Ye, Mita D Desai, Zhang Junping. Adaptive Subspace Decomposition for Hyperspectral Data Dimensionality Reduction. ICIP99 Proceeding, Japan. IEEE Signal Processing Society, 1999,2:326-329 被引量:1
  • 8Jia Xiuping, Richards J A. Segemted Pricipal Comonpents Transformation for Efficient Hyperspectral Remote-Sensing Image Display and Classification. IEEE Trans. on Geoscience and Remote Sensing, 1999,37(1):538-542 被引量:1
  • 9Luis O Jimenez, David A Landgrebe. Hyperspectral Data Analysis and Supervised Feature Reduction via Projection Pursuit. IEEE Trans. on Geoscience and Remote Sensing, 1999,37(6):2653-2667 被引量:1
  • 10Luis O Jimenez, Landgrebe D A. Projection Pursuit for High Dimensional Feature Reduction: Parallel and Sequential Approaches. Geoscience and Remote Sensing Symp. (IGARSS'95), Florence. Italy.1995. 被引量:1

同被引文献188

引证文献19

二级引证文献228

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部