期刊文献+

贪婪核主元模糊神经网络在转炉炼钢终点预报中的应用 被引量:1

Application of Greedy Kernel Principal Component Fuzzy Neural Network to Predicting Basic Oxygen Furnace Steelmaking Endpoint
下载PDF
导出
摘要 本文提出基于核思想和贪婪算法的主元模糊神经网络模型,用来进一步提高转炉终点碳含量和温度预报模型的精度.采用核函数把输入变量向高维特征空间映射以充分挖掘变量的隐藏信息,经贪婪算法优化选取主元,除去变量的冗余信息,降低输入维数.将提取的主元输入自适应神经模糊推理系统后,网络以规则的形式来反映数据间蕴含的关系;以此模拟操作工经验,减少经验差异带来的影响.对转炉生产实测数据进行了仿真,结果表明该模型是有效的. A principal component fuzzy neural network model based on kernel method and greedy algorithm is proposed, in order to improve the carbon contents of furnace endpoint and precision of the temperature focasting model. The model adopts kernel function to project the input variables into high dimensional feature space, so that the latent information can be extracted. Then greedy algorithm is used to select principal components, remove redundant information and reduce the input dimension. After the extracted principal components are introduced into the adaptive neuro-fuzzy inference system (ANFIS), the network reveals the implication relations among the inputs by means of rules, so as to simulate experience of the operators and consequently to reduce the influence resulted from different operators. Simulations are made with practical data, and the result proves the validity of the proposed model.
出处 《信息与控制》 CSCD 北大核心 2008年第4期494-499,共6页 Information and Control
基金 国家863计划资助项目(2007AA04Z158) 国家自然科学基金资助项目(60674073) 国家科技支撑计划资助项目(2006BAB14B05) 国家973计划资助项目(2006CB403405)
关键词 转炉 核主元分析 贪婪算法 自适应神经模糊推理系统 终点预报 basic oxygen furnace kernel principal component analysis, greedy algorithm adaptive neuro-fuzzy inference system (ANFIS) endpoint prediction
  • 相关文献

参考文献12

二级参考文献40

  • 1喻淑仁.用回归分析方法探讨氧气转炉炼钢终点命中率[J].武汉钢铁学院学报,1989,12(2):19-23. 被引量:1
  • 2[1]GALLOWAY S M, GREEN M J, BALAJEE S R, et al. Improvement in furnace performance at Inland steel company' s No. 2 BOF shop through models utilization and standardization of operating practices [ A]. 1991 Steelmaking Conf Proc [ C]. Pittsburgh: American Iron and Steel Society, 1991: 389 - 396. 被引量:1
  • 3[2]ANDERSON D, BARNES C M, WHITTAKER H J. Fully dynamic process control of the BOS in British Steel [ A]. 1991 Steelmaking Conf Proc [C]. Pittsburgh: American Iron and Steel Society, 1991:379 - 387. 被引量:1
  • 4[3]KEN I, MASAO F, MASAKAZU M, et al. New endpoint control system with auto-parameter-turning in BOF [ A ]. 1995 Steelmaking Conf Proc [C]. Nashville:American Iron and Steel Society, 1995:715-719. 被引量:1
  • 5[7]HUNT K J, SBARBARO D. Neural networks for nonlinear internal model control [ J]. IEE Proc-D: Control Theory and Application,1991,138 (5): 431-438. 被引量:1
  • 6邓自立,现代时间序列分析及其应用,1989年 被引量:1
  • 7徐建华,状态估计和系统识别,1981年 被引量:1
  • 8吴勇 沈理.模糊控制规则的自动生成[J].兰州大学学报:自然科学版,1996,32:522-525. 被引量:3
  • 9Rong-Jong Wai,Faa-Jeng Lin,Rou-Yong Duan.Robust Fuzzy Neural Network Control for Linear Ceramic Motor Drive via Backstopping Design Technique[J].IEEE Trans Fuzzy System,2002,10(1):102-112. 被引量:1
  • 10Waratt Rattasiri,Saman K Halgamuge.Computationally Advantageous and Stable Hierarchical Fuzzy Systems for Active Suspension[J].IEEE Trans Industrial Electronics,2003,50(1):48-61. 被引量:1

共引文献75

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部