期刊文献+

一种基于支持向量机决策树多类分类器 被引量:10

A MULTI-CLASS CLASSIFIER BASED ON SVM DECISION TREE
下载PDF
导出
摘要 提出一种基于支持向量机决策树的多类分类器SVMDT(Support Vector Machines based Decision Tree)。训练时,SVMDT采用样本类间最小距离原则进行决策树分叉,综合考虑局部类簇,生成一棵平衡的分类二叉树。分类时,SVMDT采用最大距离原则匹配决策。SVMDT训练时采用的距离为等效距离,综合考虑特征空间中样本类的中心距离以及样本类自身的分布特点,使得训练过程中确定各个SVM的优先级别更加合理,由此生成的决策树将特征空间严格划分开,避免了拒识区域的出现。UCI样本数据集实验结果表明,和传统的1对多SVM分类器相比,SVMDT具有训练速度快、分类速度快,分类精度高的特点。 A multi-class classifier based on support vector machine decision tree, named as SVMDT, is proposed in this paper. At the training phase, the minimum distance measurement between sample class is used by SVMDT as the forking principle of decision tree. The grown decision tree is a balanced binary tree because local class cluster are comprehensively considered. At classifying phase, the maximum distance measurement is used by SVMDT as the matching decision principle. The distance adopted by SVMTD in training is the equivalent distance, two factors, including distance between centres of sample class in feature space and the distribution feature of each cluster in sample class, are synthetically employed, which leads to determine a more reasonable priority grade for each SVM during the training process. Moreover the obtained decision tree divides the mapped space into many sub-spaces. There are no unclassifiable regions in the sub-spaces. The experiment based on UCI data set shows that the SVDMT classifier has more rapid training speed, classifying speed and better generalization performance than traditional one-against-the-rest classifier.
出处 《计算机应用与软件》 CSCD 2009年第11期227-230,共4页 Computer Applications and Software
关键词 决策树 支持向量机 多类分类器 平衡二叉树 可分性度量 Decision tree Support vector machine Multi-class classifier Balanced binary tree Separability measurement
  • 相关文献

参考文献9

  • 1Weston J, Watkins C. Multi-class support vector machines. Royal Holloway College, Tech Rep : SCD-TR-98-04,1998. 被引量:1
  • 2Vapnik.统计学习理论[M].张学工,译.北京:电子工业出版社,2004. 被引量:46
  • 3Kressel U. Pairwise Classification and support vector machines. Advances in Kernel Methods-Support Vector Learning, MIT Press, Cambridge, Massachusetts, chapter1 5,1999. 被引量:1
  • 4Inoue T,Abe S. Fuzzy Support Vector Machines for Pattern Classification. IJCNN'01,2001:1449 - 1454. 被引量:1
  • 5Fumitake Takahashi,Shigeo Abe. Decision Tree-based Multiclass Support Vector Machines. Proceedings of the 9th International Conferenceon Neural Information Processing,2002,2 : 1418 - 1422. 被引量:1
  • 6翟永杰,毛继珮,于丽敏,刘长良.分级聚类支持向量机在汽轮机故障诊断中的应用[J].华北电力大学学报(自然科学版),2003,30(6):25-29. 被引量:20
  • 7邓乃杨 田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004.. 被引量:37
  • 8杨万海..多传感器数据融合及其应用[M],2004.
  • 9Jin Huang,Jingjing Lu,Charles X Ling. Comparing Naive Bayes, Decision Tree,and SVM with AUC and Accuracy [ C ]//Proceedings of the 3^rd IEEE international Conference on Data Ming,2003. 被引量:1

二级参考文献2

共引文献100

同被引文献54

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部