期刊文献+

支持向量机在入侵检测中的应用 被引量:7

Application of support vector machine in intrusion detection
下载PDF
导出
摘要 入侵检测是网络安全的重要领域。安全问题的日益严峻对于检测方法提出更高的要求。支持向量机是一种基于小样本学习的有效工具。继它在字体识别,人脸识别中得到成功应用后,它被成功地应用到入侵检测领域中。介绍了支持向量机的多种算法,例如二分类的支持向量机,一分类的支持向量机,多分类的支持向量机和针对大量训练样本的支持向量机在入侵检测中的应用。通过比较发现,用支持向量机进行检测入侵大大提高了入侵检测系统的性能。 Intrusion detection is one of the important fields in network security. The serious security problems require better performance for intrusion detection system. Support vector machine (SVM) is an effective learning tool for small size samples. After its successive application in letter recognition, face recognition and so on, it found its application in intrusion detection. The applications of many algorithms of SVM, such as two_class SVM, one to two class SVM, multi_class SVM and the algorithm solving training on large training samples in intrusion detection are introduced. Detecting intrusion using SVM improves the detection performance.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第10期2297-2299,共3页 Computer Engineering and Design
基金 十.五军事通讯预研基金项目(4100104030)
关键词 网络安全 入侵检测 支持向量机 network security intrusion detection support vector machine
  • 相关文献

参考文献19

  • 1Denning D E.An intrusion detection model[J].IEEE Trans on Software Engineering,1987,13(2):222-232. 被引量:1
  • 2Vapnik V N.The nature of statistical learning theory[M].New York:Spring-Verlag,1995. 被引量:1
  • 3陈光英,张千里,李星.基于SVM分类机的入侵检测系统[J].通信学报,2002,23(5):51-56. 被引量:40
  • 4Mukkamala S,Janowski G,Sung A H.Intrusion detection using neural network and support vector machine[C].Proceedings of the 2002 International Joint Conference on Neural Networks,Volume 2,2002.1702-1707. 被引量:1
  • 5李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79
  • 6饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135
  • 7http://www.cs.unm.edu/-immsec/systemcalls.htm[DB/OL]. 被引量:1
  • 8Andrew H Sung,Srinivas Mukkamala.Identifying important features for intrusion detection using support vector machines and neural networks[C].Proceedings 2003 Symposium on Applications and the Internet,2003.209-216. 被引量:1
  • 9Bernhard Scholkopf.Estimating the support of a high2dimensional distribution[R].Haifa:Department of Computer Science,University of Haifa,2001. 被引量:1
  • 10Gattiker Fugate,Mike R.Anomaly detection enhanced classification in computer intrusion detection[C].SVM,2002.186-197. 被引量:1

二级参考文献22

  • 1张千里.CCERT的建议和入侵检测系统的研究[M].北京:清华大学,2000.. 被引量:1
  • 2张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995.. 被引量:1
  • 3[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212. 被引量:1
  • 4[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109. 被引量:1
  • 5[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132. 被引量:1
  • 6[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995. 被引量:1
  • 7[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143. 被引量:1
  • 8[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145. 被引量:1
  • 9H Debar,M Dacier,A wespi.Towards a taxonomy of intrusion detection systems[J].Computer Networks,1999-04;31(8) 被引量:1
  • 10A.K Ghosh,A Schwartzbard.A study in Using Neural Networks for Anomaly and Misuse Detection[C].In:Proceedings of the 8th USENIX Security Symposium,Washington ,DC ,US, 1999 被引量:1

共引文献229

同被引文献29

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部