期刊文献+

基于人工智能技术的网络入侵检测的若干方法 被引量:33

Several Approaches Used in Intrusion Detection Based on Artificial Intelligence
下载PDF
导出
摘要 网络入侵检测已成为计算机界研究的热点问题之一。介绍了若干用于网络入侵检测的人工智能方法,着重介绍了基于Agent的入侵检测技术,并客观分析了这些方法的优点和不足,同时列举了一些基于人工智能方法的网络入侵检测系统。最后展望了目前的发展趋势。 The ability to detect intruders in computer systems increases in importance as computers were increasingly integrated into the systems that rely on for the correct functioning of society. A history of research in intrusion detection and several approaches based on AI technology in IDS especially some machine learning technology, and then agent-based intrusion detection systems were introduced. In the end, some possible research directions and challenges was presented in this field.
出处 《计算机应用研究》 CSCD 北大核心 2007年第5期144-149,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(60503021) 江苏省自然科学基金资助项目(BK2005075)
关键词 入侵检测 机器学习 代理 网络安全 intrusion detection machine learning agent network security
  • 相关文献

参考文献32

  • 1ANDERSON J P.Computer security threat monitoring and surveillance[R].Washington:James PAnderson Co.,1980. 被引量:1
  • 2DENNING E D.An intrusion detection model[J].IEEE Transactions on Software Engineering,1987:222. 被引量:1
  • 3AUROBINDO S.An introduction to intrusion detection,ACM crossroads 2.4.[EB/OL].http:∥www.acm.org/crossroads/xrds2-4/intrus.html. 被引量:1
  • 4LEE W,STOLFO S J.A framework for constructing features and models for intrusion detection systems[J].ACM Transactions on Information and System Security,2000,3(4):227-261. 被引量:1
  • 5LEE W,XIANG D.Information-theoretic measures for anomaly detection:proceedings of the 2001 IEEE Symposium on Security and Privacy[C].[S.l.]:[s.n.],2001. 被引量:1
  • 6LINDQVIST U,PORRAS P A.Detecting computer and network misuse through the production-based expert system toolset:proceedings of the 1999 IEEE Symposium on Research in Security and Privacy[C].[S.l.]:[s.n.],1999. 被引量:1
  • 7SEKAR R,BENDRE M,DHURJATI D,et al.A fast automaton-based method for detecting anomalous program behaviors:proceedings of the 2001 IEEE Symposium on Security and Privacy[C].[S.l.]:[s.n.],2001. 被引量:1
  • 8VALDES A,SKINNER K.Probabilistic alert correlation:proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection(RAID)[C].[S.l.]:[s.n.],2001. 被引量:1
  • 9PORRAS P A,FONG M W,VALDES A.A mission-impact-based approach to INFOSEC alarm correlation:proceedings of the 5th International Symposium on Recent Advances in Intrusion Detection(RAID)[C].[S.l]:[s.n.],2002. 被引量:1
  • 10DEBAR H,WESPI A.Aggregration and correlation of intrusion-detection alerts:proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection(RAID)[C].[S.l.]:[s.n.],2001. 被引量:1

二级参考文献59

  • 1Mitchell T. Machine leaming [M]. NewYork: McGraw-Hill,1997. 被引量:1
  • 2Quinlan J R, Cameron-Jones R M. FOIL: A midterm report [R]. Spring-Verlag: Machine Learning ECML-93, Lecture notes in Computer Science #667, 1993. 被引量:1
  • 3William W Cohen. Fast effective rule induction [C]. Lake Taho, CA: In Machine Learning: the 12th International Conference, 1995. 被引量:1
  • 4MIT Lincoln Labs. 1998 DARPA intrusion detection evaluation [DB/OL]. http:∥www. ll.mit.edu/IST/ideval/index.html. 被引量:1
  • 5Lane T, Brodley C E. An application of machine learning to anomaly detection [C]. Baltimore, MD: Proceedings of the 20th National Information Systems Security Conference,1997. 366-377. 被引量:1
  • 6[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212. 被引量:1
  • 7[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109. 被引量:1
  • 8[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132. 被引量:1
  • 9[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995. 被引量:1
  • 10[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143. 被引量:1

共引文献173

同被引文献204

引证文献33

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部