期刊文献+

基于SVM决策树的文本分类器 被引量:24

Text Classifier Based on SVM Decision Tree
原文传递
导出
摘要 研究了SVM决策树分类器在文本分类中的应用,提出了一种有效的SVM决策树分类器的优化构建方法。该方法利用类间距离衡量两类间的可分性,并进一步用来描述各结点分类器类集合间的可分性。基于综合考虑结点分类器的类集合可分性,该方法能够获得优化的结点分类器类划分算法,由此构建的SVM决策树分类器在整体性能上得到优化,在文本分类中获得良好效果。 This paper proposes a new effective approach to optimize the SVM decision tree classifier while presents the research on text categorization using SVM decision tree classifier . In this approach, the within-class distance is used to measure the separability of two classes. Then the separability of class set of node classifier is measured based on that. Considering the separability of relative node classifiers , optimal class separation solution of each node classifier can be achieved. With the optimized class separation solution, the performance of SVM decision tree classifier is improved which has been tested by our text categorization experiment.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第4期412-416,共5页 Pattern Recognition and Artificial Intelligence
关键词 文本分类 支持向量机 决策树 多类分类器 Text Categorization, Support Vector Machine, Decision Tree, Multi-Class Classifier
  • 相关文献

参考文献13

  • 1Aas L, Eikvil L. Text Categorisation.. A Survey. Technical Report, NR94I, Norwegian Computing Center, Oslo, Norway,1999. 被引量:1
  • 2Vapnik V N. The Nature of Statistical Learning Theory. New York, USA:Springer-Verlag, 1995. 被引量:1
  • 3Joachims T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Proc of the 10th European Conference on Machine Learning. Chemnitz,Germany, 1998, 137-142. 被引量:1
  • 4孙建涛,郭崇慧,陆玉昌,石纯一.多项式核支持向量机文本分类器泛化性能分析[J].计算机研究与发展,2004,41(8):1321-1326. 被引量:16
  • 5Weston J, Watkins C. Multi-Class Support Vector Machines.Technical Report, CSD-TR-98-04, Department of Computer Science, University of London, London, UK, 1998. 被引量:1
  • 6Krebel U H G. Pairwise Classification and Support Vector Machines. In:Scholkopf B, Burges C J C, Smola A J, eds. Advances in Kernel Methods.. Support Vector Learning. Cambridge, USA:MIT Press, 1999, 255-268. 被引量:1
  • 7Vapnik V N. Statistical Learning Theory. New York, USA:John Wiley&Sons, 1998. 被引量:1
  • 8Bennett K, Blue J. A Support Vector Machine Approach to Decision Trees. In: Proc of the IEEE International Joint Conference on Neural Networks. Anchorage, USA, 1998, 2396-2401. 被引量:1
  • 9Takahashi F, Abe S. Decision-Tree-Based Muhiclass Support Vector Machines. In: Proc of the 9th International Conference on Neural Information Processing. Singapore, Singapore, 2002,III: 1418-1422. 被引量:1
  • 10韩家新,何华灿.SVMDT分类器及其在文本分类中的应用研究[J].计算机应用研究,2004,21(1):23-24. 被引量:15

二级参考文献10

  • 1C Cortes, V N Vapnik. Support vector networks. Machine Learning, 1995, 20(3): 273-297 被引量:1
  • 2C Burges. A tutorial on support vector machines for pattern recongnition. Data Mining and Knowledge Discovery, 1998, 2(2): 1~43 被引量:1
  • 3T Joachims. Text categorization with support vector machines:Learning with many relevant features. In: C Nedellec ed. Proc of ECML-98. Heidelberg: Springer-Verlag, 1998. 137~142 被引量:1
  • 4E Leopold, J Kindermann. Text categorization with support vector machines, How to represent texts in input space? Machine Learning, 2002,46(1-3): 423~444 被引量:1
  • 5N Cristianini, J S Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. New York:Cambridge University Press, 2000 被引量:1
  • 6Y Yang, S Slattery, R Ghani. A study of approaches to hypertext categorization. Journal of Intelligent Information Systems, 2002,18(2/3): 219~241 被引量:1
  • 7V N Vapnik. Statistical Learning Theory. New York:John Wiley & Sons, 1998 被引量:1
  • 8V N Vapnik. The Nature of Statistical Learning Theory, 2nd edition. New York: Springer-Verlag, 2000 被引量:1
  • 9李晓黎,刘继敏,史忠植.概念推理网及其在文本分类中的应用[J].计算机研究与发展,2000,37(9):1032-1038. 被引量:57
  • 10王珏,石纯一.机器学习研究[J].广西师范大学学报(自然科学版),2003,21(2):1-15. 被引量:77

共引文献29

同被引文献218

引证文献24

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部