期刊文献+

一种使用DBSCAN聚类的网络流量分类方法 被引量:5

Method of network traffic classification using DBSCAN clustering
下载PDF
导出
摘要 提出了基于DBSCAN算法的网络流量分类方法,对流的定义、特征产生、特征选择以及分类规则和分类性能的评测等内容进行了介绍。提出了基于PCA的网络流量最优特征子集的选择方法。实验结果表明,提出的分类方法能够达到较高的总精确度和查准率,能够有效地使用于网络流量分类中。 This paper presented a network traffic classification method based on DBSCAN algorithm, and introduced the definition of flow, the feature generated, the feature selection as well as the rule of classification and the performance evaluation of classification. Furthermore, employed the principle component analysis (PCA) approach to extract the optimization attribute set from the original network traffic data. The experiment results show that the method of presented can achieve higher overall accuracy and precision, and to effective use in network traffic classification.
出处 《计算机应用研究》 CSCD 北大核心 2009年第9期3461-3464,共4页 Application Research of Computers
基金 中国博士后科学基金资助项目(20070410299) 广东省自然科学基金博士科研启动基金资助项目(7300450)
关键词 网络流量分类 主成分分析 特征选择 DBSCAN聚类 network traffic classification principle component analysis feature selection DBSCAN clustering
  • 相关文献

参考文献17

  • 1MITCHELL T M. Machine learning[ M ]. ISE ed. [ S.l. ] :McGraw- Hill Education, 1997. 被引量:1
  • 2McGREGOR A, HALL M, LORIER P, et al. Flow cluster using machine learning technique[ C ]//Proc of PAM 2004. 2004. 被引量:1
  • 3MOORE A, ZUEV D. Intemet traffic classification using Bayesian analysis techniques [ C]//Proc of SIGMETRIC' 05. Banff, Canada: [s.n. ], 2005. 被引量:1
  • 4ROUGHAN M, SEN S, SPATSCHECK O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification [ C ]//Proc of IMC' 04. Taormina, Italy: [ s. n. ], 2004. 被引量:1
  • 5ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning [ C ]// Proc of LCN' 05. Sydney, Australia : [ s. n. ] , 2005. 被引量:1
  • 6ERMAN J, MAHANTI A, ARLITT M. Intemet traffic identification using machine learning[ C ]//Proc of GLOBECOM'06. San Francisco: [ s. n. ], 2006. 被引量:1
  • 7DASH M, LIU Huan. Consistency-based search in feature selection [J]. Artificial Intelligence, 2003, 151 (1-2):155-176. 被引量:1
  • 8LIU Huan, SETIONO R. A probabilistic approach to feature selection : a filter solution [ C ]//Proc of International Conference on Machine Learning. 1996:319-327. 被引量:1
  • 9DAS S. Fihers, wrappers and a boosting based hybrid for feature selection [ C ]//Proc of the 8th International Conference on Machine Learning. 2001:74-81. 被引量:1
  • 10YUAN Huang, TSENG S S, WU Gang-shan, et al. A two-phase feature selection method using both filter and wrapper [ C ]//Proc of IEEE International Conference on Systems, Man, and Cybernetics. 1999 : 132-136. 被引量:1

二级参考文献23

  • 1王振华,王攀,张顺颐.基于综合统计特征的Skype流量分析与识别[J].南京邮电大学学报(自然科学版),2006,26(1):1-7. 被引量:14
  • 2Mitchell T M. Machine learning [M]. [S.l.] : McGraw-Hill Education, 1997. 被引量:1
  • 3Mitchell T M. Does machine learning really work? [ J]. AI Magazine, 1997,18(3) :11-20. 被引量:1
  • 4Frank J. Machine learning and intrusion detection:current and future directions [ C ]//Proceedings of the National 17th Computer Security Conference, 1994. 被引量:1
  • 5Dunnigan T, Ostrouchov G. Flow characterization for intrusion detection[ R/OL]. ( 2001 - 11 ). Oak Ridge National Laboratory. http:// www. csm. oml.gov/~ost/id/tm. ps. 被引量:1
  • 6Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification [ C ]//ACM SIGCOMM Internet Measurement Workshop 2004 ,Taormina, Sicily, Italy ,2004. 被引量:1
  • 7McGregor A, Hall M, Lorier P, et al. Flow clustering using mathine learning techniques [ C]//Passive & Active Measurement Workshop 2004 ( PAM 2004), France, 19-20 April 2004. 被引量:1
  • 8Soule A,Salamatian K,Taft N,et al. Flow classification by histograms or how to go on safari in the intcrnet [C]//ACM Sigmctrics, New York, USA, June 2004. 被引量:1
  • 9Zander S, Nguyen T, Armitage G. Self-learning IP traffic elassification based on statistical flow characteristics [ C ]//Passive & Active Measurement Workshop(PAM) 2005, Boston, USA, March/April 2005. 被引量:1
  • 10Zuev D, Moore A. Traffic classification using a statistical approach [C]// Passive & Active Measurement Workshop, Boston, USA, March/April 2005. 被引量:1

共引文献24

同被引文献49

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部