期刊文献+

面向移动App流量的多特征集合集成聚类方法研究与应用 被引量:2

Research and application of multi-feature sets based ensemble clustering method for mobile App traffic
下载PDF
导出
摘要 针对移动互联网流量识别问题,基于多项性能评估指标,分析K-均值和谱聚类算法在不同特征集合或不同识别目标流量数据集上的聚类性能,并提出基于多特征集合的集成聚类方法。比较分析实验表明,相同聚类方法在不同特征集合或不同识别目标数据集上性能有所不同,集成聚类方法能够有效提高利用单个特征集合聚类方法的性能。进一步将集成聚类方法应用于App关联分析,分析结果可为移动App的划分和用户行为分析提供客观依据。 To handle the mobile traffic identification problem,based on multiple performance evaluation metrics,this paper analyzed the performance of K-means and spectral clustering algorithms on the data sets characterized by different feature sets or labeled with different class set,and proposed an ensemble clustering method from the aspects of combining the clustering results on the data sets with different feature sets.Experimental results show that the performance of the same clustering algorithm is different on the data sets with different feature sets or traffic classes,and the ensemble clustering method is able to improve the overall clustering performance.Further,this paper applied the ensemble clustering method on the correlation analysis of mobile Apps,and the results can support the decision on grouping Apps and analyzing user behaviors.
作者 吴志敏 刘珍 王若愚 陈洁桐 Wu Zhimin;Liu Zhen;Wang Ruoyu;Chen Jietong(School of Medical Information Engineering,Guangdong Pharmaceutical University,Guangzhou 510006,China;Information & Network Engineering & Research Center,South China University of Technology,Guangzhou 510041,China;Communication & Computer Network Laboratory of Guangdong,Guangzhou 510041,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第10期3101-3106,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61501128) 广东省自然科学基金资助项目(2017A030313345) 国家级大学生创新创业训练计划项目(201710573005) 广东药科大学创新强校工程项目 中央高校基本业务费资助项目(x2rj/D2174870)
关键词 移动App流量 流量统计特征 集成聚类 流量识别 mobile App traffic traffic statistics features ensemble clustering traffic identification
  • 相关文献

参考文献7

二级参考文献87

  • 1赵咏,姚秋林,张志斌,郭莉,方滨兴.TPCAD:一种文本类多协议特征自动发现方法[J].通信学报,2009,30(S1):28-35. 被引量:10
  • 2俞研,黄皓.面向入侵检测的基于多目标遗传算法的特征选择[J].计算机科学,2007,34(3):197-200. 被引量:9
  • 3Madhukar A, Williamson C. A longitudinal study of P2P traffic classification [C]//Proc of the 14th IEEE Int Syrup on Modeling, Analysis, and Simulation. Washington, DC IEEE Computer Society, 2006:179-188 被引量:1
  • 4Moore A W, Papagiannaki K. Toward the accurate identification of network applications [G]//Dovrolis C. LNCS 3431: Proc of the PAM 2005. Heidelberg: Springer, 2005:41-54 被引量:1
  • 5Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark [C]//Proc of ACM SIGCOMM. New York: ACM, 2005.. 229-240 被引量:1
  • 6Roughan M, Sen S, Spatscheck O, et al. Class of service mapping for QoS: A statistical signature-hased approach to IP traffic classification [C]//Proc of ACM SIGCOMM Internet Measurement Conf 2004. New York: ACM, 2004: 135-148 被引量:1
  • 7Zuev D. Moore A W. Traffic classification using a statistical approach [G]//Dovrolis C. LNCS 3431: Proc of the PAM. Heidelberg, Germany: Springer, 2005:321-324 被引量:1
  • 8Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] //Proc of the 2005 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 2005: 50-60 被引量:1
  • 9Tan P N, Steinbach M, Kumar V. Introduction to Data Mining [M]. Boston: Addison Wesley, 2006 被引量:1
  • 10Moore A W, Zuev D, Crogan M. Discriminators for use in flow-based classification, RR-05-13 [R]. London: Queen Mary University of London, 2005 被引量:1

共引文献99

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部