期刊文献+

采用密度空间聚类的散乱点云特征提取方法 被引量:17

Feature extraction of point clouds using the DBSCAN clustering
下载PDF
导出
摘要 针对现有点云特征提取算法中,采用全局特征度量阈值及仅使用点的局部信息进行特征提取而造成的特征尖锐程度敏感、对潜在曲面差异较大模型效果差等问题,提出一种基于密度空间聚类的散乱点云特征提取方法.首先,对点的反k近邻进行定义,并提出一种新的特征检测算子;然后,将反k近邻的尺度作为点密度,引入特征的全局约束性信息;最后,对基于密度空间聚类方法中的相关概念进行重定义并建立新的特征识别准则,提取特征点.实验结果表明,该算法简单、有效、鲁棒,同时考虑了特征的局部性信息及全局约束性信息,针对潜在曲面形状差异较大的模型表现出了较强的优越性. The existing feature extraction methods often depend on the global fixed thresholds and the local information of features, resulting in sensitivity to significance of features and failure in models with different surfaces. To overcome those problems, a novel method based on DBSCAN Clustering is proposed. First, a new reverse k nearest neighbors(kNN) of points are defined as a new feature detection operator. Second, the scales of the reverse k nearest neighbors of points are utilized as the density information of points and then the introduction of the global constraints information is proposed. Finally, based on the redefinition of the concepts of the DBSCAN clustering method and the creation of a new feature recognition criterion, an improved version of the DBSCAN clustering method is used to extract features. Experimental results show that the method is simple, effective and robust, which takes into account the local information and global constraint information and outperforms existing feature detection methods on point clouds with surfaces that have diverse geometries.
作者 张雨禾 耿国华 魏潇然 石晨晨 张顺利 ZHANG Yuhe GENG Guohua WEI Xiaoran SHI Chenchen ZHANG Shunli(School of Information Science and Technology, Northwest Univ., Xi'an 710127, China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第2期114-120,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61373117,61572400) 国家自然科学基金青年基金资助项目(61305032) 陕西省教育厅科研专项资助项目(2013JK1180)
关键词 点云 特征提取 DBSCAN 聚类 全局约束性 k 近邻 point clouds feature extraction DBSCAN clustering global constraints reverse kNN
  • 相关文献

参考文献7

二级参考文献110

  • 1刘晓宁,周明全,高原.一种自动标定颅骨特征点的方法[J].西北大学学报(自然科学版),2005,35(3):258-261. 被引量:8
  • 2樊少荣,茹少峰,周明全,耿国华.破碎刚体三角网格曲面模型的特征轮廓线提取方法[J].计算机辅助设计与图形学学报,2005,17(9):2003-2009. 被引量:17
  • 3GROSS M,PFISTER H.Point-based graphics[M].San Francisco,CA,USA:Morgan Kaufmann,2007. 被引量:1
  • 4GUMHOLD S,WANG X,MACLEOD R.Featureextraction from point clouds[C]∥Proceedings of the10th International Meshing Roundtable Conference.Berlin,Germany:Springer,2001:293-305. 被引量:1
  • 5PAULY M,KEISER R,GROSS M.Multi-scale fea-ture extraction on point-sampled surfaces[J].Comput-er Graphics Forum,2003,22(3):281-289. 被引量:1
  • 6DANIELS J,HA L K,OCHOTTA T,et al.Robustsmooth feature extraction from point clouds[C]∥Pro-ceedings of the IEEE International Conference onShape Modeling and Applications.Piscataway,NJ,USA:IEEE,2007:123-136. 被引量:1
  • 7FLEISHMAN S,COHEN-OR D,SILVA C T.Ro-bust moving least-squares fitting with sharp features[J].ACM Transactions on Graphics,2005,24(3):544-552. 被引量:1
  • 8MERIGOT Q,OVSJANIKOV M,GUIBAS L J.Ro-bust Voronoi-based curvature and feature estimation[C]∥Proceedings of the SIAM/ACM Joint Conferenceon Geometric and Physical Modeling.New York,USA:ACM,2009:1-12. 被引量:1
  • 9DEMARSIN K,VANDERSTRAETEN D,VOLOD-INE T,et al.Detection of closed sharp edges in pointclouds using normal estimation and graph theory[J].Computer-Aided Design,2007,39(4):276-283. 被引量:1
  • 10WEBER C,HAHMANN S,HAGEN H.Sharp fea-ture detection in point clouds[C]∥Proceedings of theIEEE International Conference on Shape Modeling andApplications.Piscataway,NJ,USA:IEEE,2010:175-186. 被引量:1

共引文献121

同被引文献146

引证文献17

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部