期刊文献+

基于线条方向直方图的图像情感语义分类 被引量:12

Image Emotional Semantic Classification Based on Line Direction Histogram
下载PDF
导出
摘要 图像语义分类在基于语义的图像检索中具有重要意义,但是图像的情感语义描述和分类方面的研究在近年来才刚刚起步。该文利用图像的低层特征实现了图像高层情感语义(“静感”和“动感”)的分类。图像的线条与情感之间存在明显的联系,选用线条方向直方图作为图像特征,利用概率神经网络(PNN)完成语义分类,实验表明该方法具有较好的效果。 Image semantic classification using low-level features is an important problem in semantic-based image retrieval. Although semantic description and classification in emotional way have become remarkable in recent years, the study in this field is still at the very beginning. This paper shows how high-level emotional representation of art paintings can be inferred from perceptual level features suited for the particular classes (dynamic vs. static classification). According to the strong relationship between notable lines of image and human sensations, the edge-based line direction histogram is selected as the image feature, and probabilistic neural network (PNN) is used to establish the mapping between image feature and semantic description, then images can be classified into dynamic vs. static. Experimental results demonstrate the effectiveness of the approach.
出处 《计算机工程》 EI CAS CSCD 北大核心 2005年第11期7-9,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60372068)
关键词 图像语义分类 情感语义 线条方向直方图 神经网络 图像动感 Image semantic classification Emotional semantic Line direction histogram Neural networks Dynamic sensation
  • 相关文献

参考文献5

  • 1高永英,章毓晋,罗云.基于目标语义特征的图像检索系统[J].电子与信息学报,2003,25(10):1341-1348. 被引量:32
  • 2Vailaya A,Jain A K,Zhang H J.On Image Classification: City vs.Landscape[C].In IEEE Workshop on Content-based Access of Image and Video Libraries,Santa Barbara,CA,1998-06-21: 3-8. 被引量:1
  • 3Colombo C,Del Bimbo A,Pala P.Semantics in Visual Information Retrieval[J].IEEE Multimedia,1999,6(3): 38-53. 被引量:1
  • 4IttenJ.设计与形态-包豪斯基础课程[M].上海:上海人民美术出版社,1992.. 被引量:1
  • 5Specht D F.Probabilistic Neural Netwoks [J].Neural Networks,1990,3: 109-118. 被引量:1

二级参考文献9

  • 1Y Y Gao, Y J Zhang, Object classification using mixed color feature, Proc ICASSP, Istanbul,2000, 4: 2003-2006. 被引量:1
  • 2S G Mallat, Multifrequency channel decompositions of images and wavelet models, IEEE Trans on ASSP, 1989, ASSP-37(12): 2091-2110. 被引量:1
  • 3Y Y Gao, Y J Zhang, N S Merzlyakov, Semantic-based image description model and its implementation in image retrieval, Proc of ICIG'2000, Tianjin, 2000, 657-660. 被引量:1
  • 4G Ciocca, R Schettini, Using a relevance feedback mechanism to improve content-based image retrieval, Proc of 3rd VISUAL'99, Amsterdam, 1999, 107-114. 被引量:1
  • 5Y Rui, T S Huang, S Mehrotra, Relevance feedback techniques in interactive content-based image retrieval, 1998, SPIE 3312: 25-34. 被引量:1
  • 6D Z Hong, J K Wu, S S Singh, Refining image retrieval based on contcxt-driven method,1999, SPIE 3656: 581-593. 被引量:1
  • 7A Jaimes, S F Chang, Model-based classification of visual information for content-based retrieval, SPIE 3656: 402-414. 被引量:1
  • 8E J Pauwels, G Frederix, Finding salient regions in images: Nonparametric clustering for image segmentation and grouping, Computer Vision and Image Understanding, 1999, 75(1): 73-85. 被引量:1
  • 9高永英,章毓晋.基于多级描述模型的渐进式图像内容理解[J].电子学报,2001,29(10):1376-1380. 被引量:12

共引文献31

同被引文献103

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部