期刊文献+

基于支持向量机的图像语义提取研究 被引量:2

Semantic Extraction of Image Using Support Vector Machines
下载PDF
导出
摘要 通过研究自然景观图案的语义分类,分析了不同的核函数和参数优化算法对图像语义分类性能的影响,并用自然景观图片进行了验证。实验结果表明:当核函数为RBF且参数采用网格搜索优化时,SVM的分类效果最优,可实现对自然景观图像的准确分类。此结论对SVM在图像语义分类中的推广应用具有指导意义。 SVM has been paid more and more attention for its good classification ability in image semantic classification field.As the classification performance is decided by SVM kernel functions and parameters together,this paper analyzed the influences of different kernel functions and parameter optimization algorithms on image semantic classification performance,and verified the influences with natural landscape pictures.The experimental result shows the SVM method obtained the best semantic classification effect when the RBF kernel function was choosen and parameters were optimized by grid search method.This conclusion has reference meaning in image semantic classification.
出处 《太原理工大学学报》 CAS 北大核心 2011年第6期563-565,570,共4页 Journal of Taiyuan University of Technology
基金 山西省回国留学人员资助基金(2009-31) 山西省重大产业技术开发项目([2009]446号)
关键词 支持向量机 语义分类 核函数 网格搜索 粒子群优化 SVM Image semantic classification Kernel functions Grid Search Particle swarm optimization
  • 相关文献

参考文献11

  • 1Finkelstein A,Dowell J.A comedy of errors:the London ambulance service case study[A].Proceedings of the 8th International Workshop on Software Specification and Design[C].1996.2-4. 被引量:2
  • 2Lindstrom D R.Five ways to destroy a development project[J].IEEE Software,1993,10(5):55-58. 被引量:2
  • 3OMG.Model driven architecture(MDA)(ormsc/2001-07-01)[S]. 被引量:2
  • 4Boehm B W,Brown J R,Lipow M.Quantitative evaluation of software quality[A].Proceedings of 2nd International Conference on Software Engineering[C].San Francisco,CA:IEEE Computer Society,1976.592-605. 被引量:2
  • 5Boehm B W.Characteristics of software quality[M].Amsterdam:North-Holland,1978. 被引量:2
  • 6Losavio F,Chirinos L,Perez M A.Quality models to design software architectures[A].Proceedings of Technology of Object-Oriented Languages and Systems(TOOLS)[C].IEEE,2001.123-135. 被引量:2
  • 7ISO/IEC IS 9126-1991,Information technology-software product evaluation:quality characteristics and guidelines for their use[S]. 被引量:2
  • 8徐海龙,王晓丹,廖勇,张宏达,蒋玉娇.一种基于PSO的RBF-SVM模型优化新方法[J].控制与决策,2010,25(3):367-370. 被引量:15
  • 9李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 10Chung L,Nixon B A,Yu E,et al.Non-functional requirements in software engineering[M].Kluwer Academic Publishers,1999. 被引量:2

二级参考文献16

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:48
  • 2乔立岩,彭喜元,彭宇.基于微粒群算法和支持向量机的特征子集选择方法[J].电子学报,2006,34(3):496-498. 被引量:25
  • 3郑春红,焦李成,丁爱玲.基于启发式遗传算法的SVM模型自动选择[J].控制理论与应用,2006,23(2):187-192. 被引量:18
  • 4Dong Y L, Xia Z H, Xia Z Q. A two-level approach to choose the cost parameter in support vector machines [J]. Expert Systems with Applications, 2008, 34(2): 1366-1370. 被引量:1
  • 5Ayat N E, Cheriet M, Suen C Y. Automatic model selection for the optimization of SVM kernels [J]. Pattern Recognition, 2005, 38(10) : 1733-1745. 被引量:1
  • 6Avci E. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM [J]. Expert Systems with Applications, 2009, 36(2): 1391-1402. 被引量:1
  • 7Keersthi S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Trans on Neural Networks, 2002, 13(5) : 1225-1229. 被引量:1
  • 8Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc IEEE Conf on Neural Networks. Perth:Piscataway, 1995, 4: 1942-1948. 被引量:1
  • 9Clerc M, Kennedy J. The particle swarm explosion, stability, and convergence in a multidimensional complex space [ J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 10VladimirNVapnik.统计学习理论的本质[M].北京:清华大学出版社,2000.96-107. 被引量:35

共引文献111

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部