期刊文献+

解双曲方程的一种高精度加权差分格式 被引量:1

A High-Order Accuracy Weighted Difference Scheme for Hyperbolic Partial Differential Equations
下载PDF
导出
摘要 利用一阶微商的四阶精度紧致差分逼近公式,给出了解双曲方程精度为o[(1-2θ△t,△t2+△x4)]的一种新的加权差分格式,并通过Fourier方法讨论格式的稳定性,证明了当0≤θ≤1/2时,格式是无条件稳定的;当1/2≤θ≤1时,格式是不稳定的,最后通过数值试验说明了这种方法的有效性. Based on compact differencing formula of fourth-order accuracy for second order derivatives,a simple weighted compact finite-difference scheme with truncation o[(1-2θ△t,△t2+/x4)]for sol-ving one-dimensional hyperbolic partial differential equations is developed. The presented method is unconditionally stable if0≤θ≤1/2, and the unstable condition is 1/2≤θ≤1.At last,a example to proof the scheme was given.
作者 马维元
出处 《甘肃联合大学学报(自然科学版)》 2009年第4期32-33,共2页 Journal of Gansu Lianhe University :Natural Sciences
关键词 双曲方程 加权差分格式 高精度 稳定性 hyperbolic equations compact finite-difference scheme high accuracy stability
  • 相关文献

参考文献3

二级参考文献1

  • 1李荣华,微分方程数值解法,1980年,342页 被引量:1

共引文献5

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部