摘要
对于空间分数阶对流扩散方程的初边值问题提出了一系列半加权差分格式.可以证明此格式当分数阶导数属于[((17)^(1/2)-1)/2,2]时无条件稳定,且二阶收敛.最后给出数值算例验证了理论证明.
A series of semi-weighted implicit finite difference schemes for solving onedimensional fractional advection-dispersion equations with variable coefficients on a finite domain are considered in this paper.The schemes are proved unconditionally stable and second-order accuracy in spatial grid size for the problem with order of fractional derivative belonging to[((√17-1)/2,2].Numerical examples are provided to verify the theoretical analysis.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第6期18-29,35,共13页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(11171190,11161036)
宁夏自然科学基金(NZ14233)
关键词
半加权有限差分格式
分数阶对流扩散方程
无条件稳定
semi-weighted implicit finite difference schemes
fractional advectiondispersion equations
unconditionally stable