期刊文献+

分数阶对流扩散方程的半加权有限差分格式(英文)

Semi-weighted finite difference schemes for one dimensional fractional advection-dispersion equations
下载PDF
导出
摘要 对于空间分数阶对流扩散方程的初边值问题提出了一系列半加权差分格式.可以证明此格式当分数阶导数属于[((17)^(1/2)-1)/2,2]时无条件稳定,且二阶收敛.最后给出数值算例验证了理论证明. A series of semi-weighted implicit finite difference schemes for solving onedimensional fractional advection-dispersion equations with variable coefficients on a finite domain are considered in this paper.The schemes are proved unconditionally stable and second-order accuracy in spatial grid size for the problem with order of fractional derivative belonging to[((√17-1)/2,2].Numerical examples are provided to verify the theoretical analysis.
作者 朱琳 芮洪兴
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期18-29,35,共13页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(11171190,11161036) 宁夏自然科学基金(NZ14233)
关键词 半加权有限差分格式 分数阶对流扩散方程 无条件稳定 semi-weighted implicit finite difference schemes fractional advectiondispersion equations unconditionally stable
  • 相关文献

参考文献18

  • 1BOUCHAUD J P, REORGES A. Anomalous diffusion in disordered media-statistical mechanisms, models and physical applications [J]. Phys Rep, 1990, 195: 127-293. 被引量:1
  • 2SOKOLOV I M, KLAFTER J, BLUMEN A. Fractional kinetics [J]. Physics Today, 2002, 55: 28-53. 被引量:1
  • 3KIRCHNER J W, FENG X H, NEAL C. Fractal stream chemistry and its implications for contaminant transport in catchments [J]. Nature, 2000, 403: 524-527. 被引量:1
  • 4SCHUMER R, BENSON D A, MEERSGHAERT M M, et al. Multiscaling fractional advection-dispersion equa- tions and their solutions [J]. Water Resour Res, 2003, 39: 1022-1032. 被引量:1
  • 5BAEUMER B, MEERSOHAERT M M, BENSON D A, et al. Subordinated advection-dispersion equation for contaminant transport [J]. Water Pesour Res, 2001, 37: 1543-1550. 被引量:1
  • 6BENSON D, WHEATCRAFT S, MEERSCHAERT M M. The fractional-order governing equation of Levy mo- tions [J]. Water Resour Res, 2000, 36: 1413-1424. 被引量:1
  • 7SABATELLI L, KEATING S, DUDLEY J, et al. Waiting time distributions in financial markets [J]. Eur Phys J B, 2002, 27: 273-275. 被引量:1
  • 8DENG Z, SINGH V P, BENGTSSON L. Numerical solution of fractional advection-dispersion equation [J]. J Hydraulic Engrg, 2004, 130: 422-431. 被引量:1
  • 9MEERSCHAERT M M, TADJERAN C. Finite difference approximations for fractional advection-dispersion flow equation [J]. J Comput Appl Math, 2004, 172: 65-77. 被引量:1
  • 10MEERSCHAERT M M, TADJERAN C. Finite difference approximations for two-sided space-fractional partial differcntial equations [J]. J Comput Appl Math, 2006, 56: 80-90. 被引量:1

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部