期刊文献+

儿童数学应用题表征水平的特点研究 被引量:5

The Feature of Elementary Fourth to Sixth Graders' Representational Level in Math Word Problem and Its Influence on Problem-solving
下载PDF
导出
摘要 本研究运用实验法对某普通小学的161名4-6年级学生进行了长方形面积任务和MPI测验,以考察学生的应用题表征水平及其对问题解决的影响。结果表明:(1)表征水平随着年级的升高而不断提高,学生在表征水平上性别差异不显著;(2)无论哪个年级,表征水平都是优等生好于中等生,中等生好于差等生;表征水平越高,学生在问题解决上的成绩越好;(3)随着题目难度的不断加大,各表征水平的学生在解题正确率上的差距也在不断拉大。也就是说,题目越难,表征水平在解题中的作用也就越明显。 The rectangle area task and the MPI test were administered to 161 students from the fourth to sixth grades by an experiment method in order to explore the representational level in math word problem and its influence on problem-solving. The results showed that: (1) the representational level improved with children entering the higher grade, and gender difference was insignificant at the representational level; (2)Regardless of grade, superior pupils were highest at the representational levels. The higher the representational level, the better the test achievement ; (3)With the items becoming more difficult, the difference of test achievement at representational levels got greater.
出处 《心理科学》 CSSCI CSCD 北大核心 2009年第2期293-296,共4页 Journal of Psychological Science
基金 全国教育科学规划国家重点项目(ABA050001) 国家自然科学基金项目(30770729) 北京市哲学社会科学规划项目(06BaJY010) 北京市教育委员会社科计划项目资助
关键词 小学儿童 数学应用题 表征水平 问题解决 elementary student arithmetic word problem representational level problem-solving
  • 相关文献

参考文献6

  • 1Low R, Over R. Hierarchical ordering of schematic knowledge relating to area - of - rectangle problems. Journal of Educational Psychology, 1992, 84 (1) : 62 - 69. 被引量:1
  • 2辛自强.关系-表征复杂性模型的检验[J].心理学报,2003,35(4):504-513. 被引量:42
  • 3Gilat E, Irit P. Cognition and Metacognition: Evidence of Higher Thinking in Problem - solving of Adolescents with Mental Retardation. Education and Training in Mental Retardation and Developmental Disabilities, 2001, 36( 1 ) : 83 - 93. 被引量:1
  • 4Teong S K. The Effect of Metacognitive Training on Mathematical Word - problem Solving. Journal of Computer Assisted Learning, 2003, 19: 46- 55. 被引量:1
  • 5Ayres P L. Systematic Mathematical Errors and Cognitive Load. Contemporary Educational Psychology, 2001, 26 : 227 - 248. 被引量:1
  • 6Staub F C, Reusser K. The Role of Presentational Structures in Understanding and Solving Mathematical Word Problems. Hillsdale: NJ: lawrence Erlhaum, 1995: 285 - 305. 被引量:1

二级参考文献18

  • 1辛自强,俞国良.学习不良儿童研究的社会认知取向[J].心理科学,2001,24(5):544-548. 被引量:23
  • 2Lewis A, Mayer R E. Students' miscomprehension of relational statements in arithmetic word problem. Journal of Educational Psychology, 1987, 79: 363~371 被引量:1
  • 3Commons M L, Trudeau E J, Stein S A, Richards F A. Hierarchical complexity of tasks shows the existence of developmental stages. Developmental Review, 1998, 18: 237~278 被引量:1
  • 4Halford G S, Wilson W H, Phillips S. Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 1998, 21(6): 803~831 被引量:1
  • 5Ceci S J. On bio-ecological treatise on intellectual development. Englewood Cliffs, New Jersey: Prentice Hall, 1990. 93~153 被引量:1
  • 6Sternberg R J. Beyond IQ: A triarchic theory of human intelligence (in Chinese). Translated by Yu Xiaolin, Wu Guohong. Shanghai: East China Normal University Press , 2000, 15-17(斯腾伯格. 超越IQ: 人类智力的三元理论. 俞晓琳, 吴国宏译. 上海: 华东师范大学出版社, 2000, 15-17 ) 被引量:1
  • 7Mayer R E. Frequency norms and structural analysis of algebra story problems into families, categories and templates. Instructional Science, 1981, 10: 135~175 被引量:1
  • 8Mayer R E. Memory for algebra story problems. Journal of Educational Psychology, 1982, 74: 199~216 被引量:1
  • 9Low R, Over R. Hierarchical ordering of schematic knowledge relating to area-of-rectangle problems. Journal of Educational Psychology, 1992, 84(1): 62~69 被引量:1
  • 10Montague M. Strategy instruction and mathematical problem-solving. Reading, Writing, and Learning Disabilities, 1988, 4: 275~290 被引量:1

共引文献41

同被引文献88

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部