期刊文献+

基于粒子滤波的机动目标跟踪算法仿真研究 被引量:7

Research on Algorithms about Maneuvering Target Tracking Based on Particle Filter
下载PDF
导出
摘要 针对非线性多目标模型,应用粒子滤波算法,这种方法不受模型线性和Gauss假设的约束,是一种处理非线性非高斯动态系统状态递推估计的有效算法。在粒子滤波的基础上融合扩展卡尔曼滤波算法和无迹卡尔曼滤波算法。融合后的新算法在计算提议概率密度分布时,粒子的产生充分考虑当前时刻的量测,使得粒子的分布更加接近状态的后验概率分布,再用平滑算法处理滤波的结果。仿真结果表明,算法有较好的跟踪效果。 Particle filter algorithm is proposed for nonlinear multi-target state space models and is an effective algorithm for the state recursive estimation in nonlinear and non- Gaussian dynamic systems. Under the theory framework of particle filter, a new algorithm is presented,which combines the particle filter algorithm with extend Kalman filter algorithm and unscented Kalman filter algorithm,when it calculates the proposed probability density distribution, the sampling particles can utilize the system current measures. That gets the particles distribution more approach to the station posterior distribution. Then smooth algorithm is processing the result of filtered. The simulations show that this algorithm has better tacking effect.
出处 《计算机与数字工程》 2009年第3期65-67,77,共4页 Computer & Digital Engineering
基金 湖北省重大科技专项基金项目(编号:2007DA111)资助
关键词 粒子滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 机动目标跟踪 particle filter, unscented Kalman filter, extended Kalman filter, maneuvering target tracking
  • 相关文献

参考文献8

二级参考文献32

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978.. 被引量:1
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25. 被引量:1
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995. 被引量:1
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356. 被引量:1
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997. 被引量:1
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000. 被引量:1
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,. 被引量:1
  • 10Musso C, Oudjane N, Le Gland F. Sequential Monte Carlo methods in practice. New York: Springer-Verlag, 2002. 被引量:1

共引文献91

同被引文献44

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部