期刊文献+

一种基于强机动的目标跟踪改进算法 被引量:2

An Improved Algorithm Based on Strong Maneuvering Target Tracking
下载PDF
导出
摘要 针对传统目标跟踪算法鲁棒性较差等问题,提出了一种基于当前统计模型的无迹卡尔曼滤波交互式多模型(IMM-CS-UKF)融合算法。在交互式多模型算法框架内,计算当前统计模型的概率,提高了统计模型的目标加速度和自适应性。该算法结合了交互式多模型和无迹卡尔曼滤波算法,具有对不同机动模式目标的自适应跟踪能力和精度高等优点。仿真结果表明,该算法对以多种机动策略实时机动的目标具有较好的跟踪性能。 Aiming at the problems of robustness weakness of traditional target tracking algorithm, an un- scented Kalman filter interactive multiple model based on current statistical model( IMM -CS -UKF)fusion algorithm is proposed. In the interactive multiple model algorithm framework, the probability of current sta- tistical model is calculated, and the target acceleration and adaptability of statistical model are improved. The interactive multiple model unscented Kalman filtering algorithm is combined with this algorithm which has adaptive tracking ability for different maneuvering model target and has higher precision. The simula- tion results show that the algorithm has better tracking performance for multiple maneuvering model with re- al -time maneuvering target.
作者 章俊伟
出处 《航天控制》 CSCD 北大核心 2015年第2期22-25,31,共5页 Aerospace Control
基金 国家自然基金(61171179 61227003 61301259) 山西省自然科学基金(2012021011-2) 高等学校博士学科点专项科研基金(博导类)(20121420110006) 山西省回国留学人员科研资助项目(2013-083)
关键词 无迹卡尔曼滤波 机动目标跟踪 交互式多模型 当前统计模型 Unscented Kalman filter Maneuvering target tracking Interactive multiple model Current sta-tistical model
  • 相关文献

参考文献6

二级参考文献83

  • 1G Welch, G Bishop. An introduction to the Kalman[ M]. Department of Computer Science University of North Carolina at Chapel Hill, 2004.1 - 16. 被引量:1
  • 2S J Julier, J KUhlmann, H F Durrant - Whyte. A new approach for the nonlinear transformation of means and covarianees in filters and estimators[ J]. IEEE Trans on Automatic Control, 2000,45 (3) :477 -482. 被引量:1
  • 3Chang Wook Ahn, R S Ramakrishna. Elitism - based compact genetic algorithms[ J]. IEEE transactions on Evolutionary Computation, 2003,7 (4) :367 - 385. 被引量:1
  • 4S J Julier, J K Uhlmann. A consiscent, debiased method for converting between polar and Cartesian coordinate systems [ C ]. The Proc of AeroSense : The 11 th Int Symposium on Aerospace/Defense Sensing Simulation and Controls, Orando, 1997.110 - 121. 被引量:1
  • 5S J Julier, J K Uhlmann. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations [ C]. Proc of American Control Conf, Jefferson City,2002. 4555 - 4559. 被引量:1
  • 6S J Juliet, J K Uhlmann. Unscented filtering and nonlinear estimation [ C ]. Pine of the IEEE Aerospace and Electronic Systems, 2004,92 ( 3 ) :401 - 422. 被引量:1
  • 7E A Wan, A T Nelson. Dual estimation and the unscented transformation[ C]. Proc of the 2000 Conference,Advances in Neural In- formation Processing Systems 12. Washington: MIT Press, 2000:666 - 672. 被引量:1
  • 8Samuel Blaekman, Robert Popil. Design and Analysis of Modem Tracking Systems. Artech House, 1999:200 - 210. 被引量:1
  • 9G A Watson, W D Blair. Tracking Performance of a Phased Array Radar with Revisit Time Controlled Using the IMM Algorithm. Proceedings of IEEE 1994 National Radar Conference, Atlanta, GA, March 1994. 被引量:1
  • 10Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188. 被引量:1

共引文献253

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部