期刊文献+

改进的马尔可夫参数自适应IMM算法 被引量:31

Improved Adaptive Markov IMM Algorithm
下载PDF
导出
摘要 针对机动目标跟踪问题,首先推导了马尔可夫参数自适应IFIMM算法自适应调节模型切换矩阵的必要条件,进一步分析了马尔可夫矩阵修正IMM跟踪算法的适用局限性.通过重新定义模型误差压缩率之比,提出了一种改进的马尔可夫参数自适应IMM算法,并阐述了误差压缩率之比的特性.最后进行了仿真实验并指出了马尔可夫自适应IMM算法的适用范围. To solve the maneuvering target tracking problem, firstly, the essential condition of adaptive adjusting model based on adaptive Markov parameter IFIMM algorithm is deduced. Then the limitation of adaptive Markov parameter IMM algorithm is further analyzed. Through redefining the error compression ratio between models, an improved adaptive Markov parameter IMM algorithm is proposed, and the character of the error compression ratio is elaborated. Finally, application scope of improved adaptive Markov parameter IMM algorithm is delimited by simulation experiments.
作者 戴定成 姚敏立 蔡宗平 何恒 DAI Ding-cheng YAO Min-li CAI Zong-ping HE Heng(Department of Information Engineering, Rocket Force University of Engineering ,Xi ' an, Shaanxi 710025, China Department of Automation, Rocket Force University of Engineering, Xi' an, Shaanxi 710025, China)
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第5期1198-1205,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61179005)
关键词 目标跟踪 交互式多模型 马尔可夫矩阵 后验信息 target tracking interacting multiple model(IMM) Markov matrix posterior information
  • 相关文献

参考文献3

二级参考文献25

  • 1邓小龙,谢剑英,倪宏伟.Interacting Multiple Model Algorithm with the Unscented Particle Filter (UPF)[J].Chinese Journal of Aeronautics,2005,18(4):366-371. 被引量:8
  • 2臧荣春,崔平远.马尔可夫参数自适应IFIMM算法研究[J].电子学报,2006,34(3):521-524. 被引量:27
  • 3丁振,潘泉,张洪才,戴冠中.新息滤波交互式多模型噪声辨识算法[J].电子学报,1997,25(5):95-98. 被引量:14
  • 4T KIRUBARAJAN,Y BAR-SHALOM.Kalman filter versus IMM estimerator:when do we need the latter[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39 (4):1452-1456. 被引量:1
  • 5PETER D HANLON,PETER S MAYBECK.Multiplemodel adaptive estimation using a residual correlation kalman filter bank[J].IEEE Transactions on Aerospace and Electronic Systems,2000,36 (2):393-405. 被引量:1
  • 6X R LI,Y BAR-SHALOM.Model-set adaptation in multiple-model estimation for hybrid systems[A].Proc American Control Conference[C].Chicago:IL,1992.1794-1799. 被引量:1
  • 7Y BOERS,J N DRIESSEN.Interacting multiple model particle filter[J].IEE Process Radar Sonar Navigation,2003,150(5):344 -349. 被引量:1
  • 8BRANKO RISTIC,M SANJEEV ARULAMPALAM.Tracking a manoeuvring target using angle-only measurements:algorithms and performance[J].Signal Processing,2003,(83):1223-1238. 被引量:1
  • 9Mazor E, Averbuch A, Bar Shalom Y, et al. Interacting muhi pie model methods in target tracking: a survey[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998,34 (1) : 103 - 123. 被引量:1
  • 10Biota H A P, 13ar Shalom Y. The interacting multiple model al- gorithm for systems with Markovian switching coefficients[J]. IEEE Trans. on Automatic Control,1988,33(8):780-783. 被引量:1

共引文献43

同被引文献162

引证文献31

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部