期刊文献+

基于改进IMM算法的机场移动目标轨迹跟踪与预测 被引量:5

Trajectory Tracking and Prediction of Airport Moving Targets Based on Improved IMM Algorithm
下载PDF
导出
摘要 为了实现机场场面移动目标的准确轨迹跟踪与预测,考虑使用IMM算法对轨迹进行校准,并在此基础上提出了一种改进的轨迹外推算法.首先对机场进行路网建模,路网中节点之间互相转移概率用概率邻接矩阵表示,并建立匀速、匀变速,以及匀速转弯模型.然后对采集的ADS-B数据进行实时处理,结合改进的IMM算法实现轨迹跟踪.为推测机场目标意图,在缺乏轨迹观测数据情况下,将历史统计概率纳入马尔科夫转移矩阵考量以提高轨迹外推的精度,使其更符合实际.仿真结果证实了修正后的外推算法预测的轨迹比未修正的外推算法准确率更高. In order to realize accurate trajectory tracking and prediction of moving targets in airport scenes,IMM algorithm was considered to calibrate the trajectory,and on this basis,an improved trajectory extrapolation algorithm was proposed.Firstly,a road network model with uniform speed,uniform speed change and uniform turning was established.The probability of mutual transfer between nodes in the road network was expressed by probability adjacency matrix.Then the collected ADS-B data are processed in real time,and the trajectory tracking was realized by combining the improved IMM algorithm.In order to predict the target intention of the airport,in the absence of trajectory observation data,historical statistical probability was taken into consideration in Markov transition matrix to improve the accuracy of trajectory extrapolation and made it more realistic.The simulation results confirm that the trajectory predicted by the modified extrapolation algorithm is more accurate than that predicted by the unmodified extrapolation algorithm.
作者 赵文杰 汤新民 黄忠涛 朱盼 ZHAO Wenjie;TANG Xinmin;HUANG Zhongtao;ZHU Pan(Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;The Second Research Institute of China Civil Aviation Administration, Chengdu 610041, China)
出处 《武汉理工大学学报(交通科学与工程版)》 2020年第3期468-473,479,共7页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目(61773202) 四川省科技计划项目(2018JZ0030) 空管国家重点实验室开放基金(SKLATM201706)资助。
关键词 机场场面模型 改进IMM算法 轨迹跟踪 轨迹外推 airport scene model improved IMM algorithm trajectory tracking trajectory extrapolation
  • 相关文献

参考文献7

二级参考文献40

  • 1臧荣春,崔平远.马尔可夫参数自适应IFIMM算法研究[J].电子学报,2006,34(3):521-524. 被引量:27
  • 2蔡庆宇,薛毅,张伯颜.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1996. 被引量:3
  • 3KALRNAN R E. A new approach to linear filtering and prediction problems[J]. Basic Eng. ,1960, 82D:34-35. 被引量:1
  • 4BAR-SHALOM Y, TSE E. Tracking in a cluttered environment with probabilistic data association[J]. Automatica, 1975, 11(9): 451-460. 被引量:1
  • 5BAR-SHALOM Y, FORTMANN T E. Tracking and data association[M]. New York: Academic Press Inc. ,1988. 被引量:1
  • 6BIOM H A P, BAR-SHALOM Yaakov. The interacting multiple model algorithm for systems with Markovian switching coefficients[J]. IEEE Trans. on Aerospace and Electronic Systems, 1988, 24(8):780-783. 被引量:1
  • 7LERRO D, BAR-SHALOM Yaakov. Interacting multiple model tracking with target amplitude feature [J]. IEEE Trans. on Aerospace and Electronic Systems. 1993, 29(2):494-509. 被引量:1
  • 8LI X R, BAR-SHALOM Yaakov. Performance prediction of the interacting multiple model algorithm [J]. IEEE Trans. on Aerospace and Electronic Systems, 1993, 29 (3):755-771. 被引量:1
  • 9ICAO. Advanced surface movement guidance and control sys temsmanual[R]. US. ICAO9830, 2004. 被引量:1
  • 10Farina A. Application of knowledge-based techniques to tracking function. [EB/OL]. [2011 - 05 - 06]. http: // www. rio. nato. int. 被引量:1

共引文献80

同被引文献59

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部