期刊文献+

多目标微粒群优化算法 被引量:5

Multi-objective particle swarm optimization
下载PDF
导出
摘要 通过设计一种Pareto解集过滤器,并在此基础上给出多目标优化条件下的微粒群算法群体停滞判断准则,基于该准则提出了一种多目标微粒群优化算法。算法利用Pareto解集过滤器提高了候选解的多样性,并使用图形法将所提算法与经典的多目标优化进化算法在一组标准测试函数上进行了比较,结果表明算法具有更好的搜索效率。 A new kind of filter for Pareto solutions is presented.And a kind of critertion judging the stagnation of the particles in particle swarm optimization based on the filter is proposed.Based on which,a kind of multi-objective particle swarm optimization algorithm is proposed.By using the filter for Pareto solutions can improve algorithm's ability to keep diversity.The proposed algorithm is compared with some well known multi-objective evolutionary algorithms through series of standard test functions by means of visual graphs.The results indicate that the algorithm can search the Pareto optimum more effectively.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第34期64-66,207,共4页 Computer Engineering and Applications
基金 上海市重点学科建设资助项目(No.T0502)
关键词 多目标优化 PARETO解集 微粒群算法 multi-objective optimization Pareto solutions particle swarm optimization
  • 相关文献

参考文献7

  • 1Coello C A C.A comprehensive survey of evolutionary-based multiobjective optimization techniques[J].Knowledge and Information Systems:An International Journal, 1999,1(3):269-308. 被引量:1
  • 2Schaffer J D.Multi objective optimization with vector evaluated genetic algofithms[C]//Proceedings of the 1st International Conference on Genetic Algorithms,Lawrence Erlbaum, 1985:93-100. 被引量:1
  • 3Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan.Piscataway,NJ:IEEE Service Center, 1995:39--43. 被引量:1
  • 4Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Trans on Evolutionary Computation,2002,6(2) : 182-197. 被引量:1
  • 5Zitzler E,Thiele L.Multiobjective evolutionary algorithms:a comparative case study and the strength pareto approach[J].IEEE Transaction on Evolutionary Computation, 1999,3 (4) : 257-271. 被引量:1
  • 6Iorio A W,Li X D.A cooperative coevolutionary multiobjective algorithm using non-dominated sorting[C]//Proc of the Genetic and Evolutionary Computiaon Conf, Part Ⅰ.Washington: Springer-Verlag, 2004 : 537-548. 被引量:1
  • 7刘淳安.解多目标优化问题的新粒子群优化算法[J].计算机工程与应用,2006,42(2):30-32. 被引量:5

二级参考文献9

  • 1刘淳安,王宇平.一种基于新的模型的多目标存档遗传算法[J].计算机工程与应用,2005,41(4):43-45. 被引量:4
  • 2Kalyanmoy Deb.Multi-Objective Optimization using Evolutionary Algorithms[M].Chichester : John Wiley & Sons, Ltd, 2001. 被引量:1
  • 3J D Knowles,D W Come.Approximating the Non-Dominated Front Using the Pareto Archived Evolutionary Strategy[J].Evolutionary Computation,2000;8(2) : 149-172. 被引量:1
  • 4R Eberhart,J Kennedy.A New Optimizer Using Particle Swarm Theory[C].In:Proc of the 6th Int Symposium on Micro Machine and Human Science. Piscataway,NJ:IEEE Service Center,1995:39-43. 被引量:1
  • 5J Kennedy,R Eberhart.Particle Swarm Optimization[C].In :IEEE Int'l Conf on Neural Networks,Perth, Australia, 1995. 被引量:1
  • 6Eckart Zitzler, Kalyanmoy Deb, Lothar Thele.Comparison of Multi-Objective Evolutionary Algorithms :Empirical Results[J].Evolutionary Computation, 2000; 8 (2) : 1-24. 被引量:1
  • 7Shi Y,Eberhart R C,Particle Swarm Optimization:Developments,Applications and Resource[C].In:Proc of Congress on Evolutionary Computation, NJ: Piscataway Press, 2001 : 81 -86. 被引量:1
  • 8V Ramasubramanian,K K Paliwal.An Efficient Approximation-Elimination Algorithm for Nearest-Reighbor Search Based on A Spherical Distance Coordinate Formulation[J].Pattern Recognit, Lett, 2002 ,13 (7) : 471 -480. 被引量:1
  • 9Deb K.Multiobjective Genetic Algorithms: Problem Difficulties and Construction of Test Problem[J].Evolutionary Computation, 1999 ; 7 (3) : 205-230. 被引量:1

共引文献4

同被引文献146

引证文献5

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部