期刊文献+

多目标粒子群算法用于补料分批生化反应器动态多目标优化 被引量:17

Multi-objective particle swarm optimization approach to solution of fed-batch bioreactor dynamic multi-objective optimization
下载PDF
导出
摘要 多目标优化是过程系统工程的重要课题,通常以加权或约束方式将其转换为单一目标,未能反映多目标间的复杂关系,不利于随时根据需求作出有效的决策。基于群智能的粒子群算法具有全局优化性能,且易于实现。为使其适于多目标优化,应拓展功能,实施改造。以Pareto支配概念评价种群个体的优劣,设计了确定局部最优点和全局最优点的操作。又利用各粒子的局部最优点信息进行速度更新,以加强种群的多样性,避免因早熟而陷于局部最优。还设置了外部优解库,并通过分散度计算,以适当的策略进行更新,使之逐步均匀地逼近于Pareto最优解集。由此构建一种多目标粒子群优化算法(multi-objective particle swarm optimization,MOP-SO),并用于补料分批生化反应器的动态多目标优化,取得了满意的结果。可基于所搜得的Pareto最优解集,分析目标间的关系,为合理决策提供有效的支持。经与NSGA-II比较,MOPSO算法具有更为优良的性能。 Multi-objective optimization is an important topic of process systems engineering. Through simply converting to a single goal, it often fails to reflect the more complex relationship between goals, and it is not conductive to effective decision-making at any time on demand. Swarm intelligence based particle swarm optimization (PSO) algorithm has good global optimization performance and can be easily implemented. To make it suitable for multi-objective optimization, PSO should be further rebuilt. Firstly, the concept of Pareto dominance was used to evaluate the fitness of particles, and two kinds of operation for determining the local and global optimal point respectively were designed. Secondly, velocity update strategy, utilizing all particles' local best information, was used to enhance the ability of global convergence. Thirdly, an external archive technique was set up, and through calculating the degree of dispersion, an appropriate update strategy was adopted to uniformly approximate the Pareto optimal solution set step-by-step. Finally, multi-objective particle swarm optimization (MOPSO) was proposed, and it was applied to dynamic multi-objective optimization of fed-batch bioreactor, the satisfactory solution was obtained. According to the obtained pareto optimal solution set, the relationship between goals could be analyzed further, which could contribute to rational and effective decision-making. Compared with NSGA-Ⅱ , MOPSO showed better performance.
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第5期1262-1270,共9页 CIESC Journal
基金 国家自然科学基金项目(20276063)~~
关键词 多目标 粒子群算法 均匀逼近 PARETO最优集 补料分批生化反应器 动态优化 multi-objective particle swarm optimization uniform approximation Pareto optimal solution set fed-batch bioreactor dynamic optimization
  • 相关文献

参考文献14

  • 1Balsa-Canto E,Banga J R,Alonso A A,Vassiliadis V S.Dynamic optimization of chemical and biochemical processes using restricted second-order information.Computers and Chemical Engineering,2001,25:539-546 被引量:1
  • 2Sarkar D,Modak J M.Optimization of fed-batch bioreactors using genetic algorithm:multiple control variables.Computers and Chemical Engineering,2004,28:789-798 被引量:1
  • 3Fonseca C F,Fleming P J.Genetic algorithms for multiobjective optimization:formulation,discussion and generalization//Proceedings of the Fifth International Conference on Genetic Algorithms.San Mateo,CA:Morgan Kaufmann Publisher,1993:416-423 被引量:1
  • 4Srinivas N,Deb K.Multi-objective function optimization using nondominated sorting genetic algorithms.Evolutionary Computation,1995,2 (3):221-248 被引量:1
  • 5Kennedy J,Eberhart R.Particle swarm optimization//Proc.IEEE Int.Conf.on Neural Networks,Piscataway:IEEE Service Center,1995:1942-1948 被引量:1
  • 6Parsopoulos K E,Vrahatis M N.Particle swarm optimization method in multiobjective problems//Proc ACM Symp on Applied Computing 2002,Madrid The Association for Computing Machinery,2002:603-607 被引量:1
  • 7Hu X,Eberhart R C.Multiobjective optimization using dynamic neighborhood particle swarm optimization//Proc IEEE Congress on Evolutionary Computation,Honolulu:HI,2002:1677-1681 被引量:1
  • 8Coello C A C,Pulido G T,Lechuga M S.Handling multiple objectives with particle swarm optimization.IEEE Trans.Evol.Comput.,2004,8:256-279 被引量:1
  • 9Huang V L,Suganthan P N,Liang J J.Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems.International Journal of Intelligent System,2006,21:209-226 被引量:1
  • 10Xie X F,Zhang W J,Yang Z L.Hybrid Particle Swarm Optimizer with Mass Extinction//IEEE 2002 International Conference on Communications,Circuits and Systems and West Sino Expositions:Chengdu:IEEE Service Center,2002,2:1170-1173 被引量:1

同被引文献335

引证文献17

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部