期刊文献+

学生就业贝叶斯网模型的构建与推理 被引量:3

The Construction of the Students' Employment Model Based on the Bayesian Network and its Inference
下载PDF
导出
摘要 贝叶斯网是一种帮助人们将概率统计应用于复杂领域、进行不确定性推理和数据分析的工具.构建了学生就业贝叶斯网模型,找出就业受择业观念、能力素质、择业技巧、就业心理等因素影响的相互依赖关系,并在学生就业贝叶斯网模型基础上利用簇树进行推理. The Bayesian network is a tool that helps to apply the probability statistics to the complex domain for the uncertainty inference and the data analysis. The paper constructs the Bayesian network model for the students' employment and analyzes the interaction among the factors like career preference, competence and quality, career skills, and employment psychology. The cluster tree of the Bayesian network model is constructed and inferred to provide the employment reference for the students.
出处 《云南民族大学学报(自然科学版)》 CAS 2008年第4期358-361,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 云南民族大学青年基金"信息技术视野中的云南少数民族文化发展与保护研究"资助项目 "通信原理"省级精品课程建设资助项目 "电子与通信专业实验课程体系研究"教研资助项目([2007]第2号)
关键词 贝叶斯网 学生就业 机器学习 簇树推理 Bayesian network students' employment machine learning cluster tree inference
  • 相关文献

参考文献6

二级参考文献23

  • 1HaykinS.神经网络原理[M].北京:机械工业出版社,2004.. 被引量:11
  • 2PEARL J. Probabilistic reasoning in intelligent system: Network of plausible inference[ M]. San Francisco, CA: Morgan Kautmann,1988. 被引量:1
  • 3HECKERMAN D . A tutorial on learning with Bayesian Network[ R]. Technical Report MSR-TR-95-O6 Microsoft Research, March1995. 被引量:1
  • 4CHENG J, GREINER R, KELLY J, et al. Learning Bayesian networks from data: an information-theory based approach[ J]. Antificial Intelligence archive, 2002, 137 ( 1 - 2) : 43 - 90. 被引量:1
  • 5PEARL J. Probabilistic reasoning in intelligent system: Network of plausible inference[M]. San Francisco, CA: Morgan Kautmann,1988. 被引量:1
  • 6CHENG J, GREINER R, KELLY J, et al. Learning Bayesian networks from data: an information-theory based approach[J].Artificial Intelligence archive, 2002, 137 ( 1 - 2) : 43 - 90. 被引量:1
  • 7J Pearl. Probabilistic Reasoning inIntelligent Systems: Network of Plausible Inference. San Francisco, CA: Morgan Kaufmann,1988 被引量:1
  • 8J Suzuki. A construction of bayesian networks from databases based on a MDL scheme.In: Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo, CA: MorganKaufmann, 1993. 266~273 被引量:1
  • 9Y Xiang, S K M Wong. Learning conditional independence relations from aprobabilistic model. Department of Computer Science, University of Regina, CA, Tech Rep:CS-94-03, 1994 被引量:1
  • 10D Heckerman. Learning bayesian network: The combination of knowledge andstatistical data. Machine Learning, 1995, 20(2): 197~243 被引量:1

共引文献18

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部