期刊文献+

基于再生核希尔伯特空间的In-Silico基因网络重构

Reconstructing In-Silico Gene Regulatory Network Based on Reproducing Kernel Hilbert Space
原文传递
导出
摘要 针对逆向工程的评估与方法交流(Dialogue for Reverse Engineering Assessments and Methods,DREAM)第四次竞赛(DREAM4)中In-Silico基因调控网络(Challenge2)的重构问题,作者提出一种基于再生核希尔伯特空间的统计独立性度量方法(Hilbert-Schmidt independence criterion,HSIC)。该方法不要求数据符合某种特定的分布,约束条件少,是一种非参数计算统计独立性的方法。对10规模的In-Silico基因网络,HSIC方法的受试者工作特征曲线面积(area under receiver operating characteristic curve,AUROC)比常微分方程(ordinary differential equation,ODE)方法和格兰杰因果关系(granger causality,GC)方法分别高了16%和7%,比动态贝叶斯网络(dynamic bayesian network,DBN)方法和非线性动态系统(nonlinear dynamic systems,NDS)方法中的最好算法分别高了2.4%和1.4%。对100规模的In-Silico基因网络,HSIC方法的AUROC分别超出ODE及GC方法 16%和14.2%,超出DBN和NDS方法中的最好算法5%和1.4%。实验表明,HSIC方法具有基因调控网络重构的可行性与可靠性,并且对In-Silico网络的重构准确率要优于目前经典的基因调控网络建模方法。 In the fourth Dialogue for Reverse Engineering Assessments and Methods (DREAM4) competition, In-Silico dataset (Challenge 2) was generated with a 'true' biological gene network. The aim of this work is to reconstruct gene network structure from the data. Here, the authors presented a statistical independent measurement method based on reproducing kernel Hilbert space- Hilbert-Schmidt independence criteria (HSIC) to identify the gene regulatory network. Instead of data fitting, HSIC provides a criterion to measure the statistical dependence. Besides, it is a nonparametric method, has no assumption on the data distribution and computationally efficient. Comparative experimental results showed that the HSIC achieved a better performance than several classical gene regulatory network modeling methods. For size 10 network, the area under receiver operating characteristic curve (AUROC) value obtained by HSIC was 16 percent higher than ordinary differential equations (ODE), 7 percent higher than granger causality (GC), 2.4 percent and 1.4 percent higher than the best algorithm in dynamic Bayesian network (DBN) and nonlinear dynamical systems (NDS), respectively. For size 100 network, the AUROC value of HSIC was 16 percent higher than ODE, 14.2 percent higher than GC, 5 percent and 1.4 percent higher than the best algorithm in DBN and NDS. These results reveal that the HSIC method has stronger capability of structural identification and is feasible for construct complex gene regulatory network.
出处 《生物物理学报》 CAS CSCD 北大核心 2013年第7期515-526,共12页 Acta Biophysica Sinica
基金 国家自然科学基金项目(61271063) "973"计划项目(2013CB329502) 国家杰出青年科学基金项目(60788101)~~
关键词 基因调控网络 重构 再生核希尔伯特空间 独立性 受试者工作特征曲线面积 Gene regulatory network Reconstruct Reproducing kernel Hilbert space Independence AUROC
  • 相关文献

参考文献19

  • 1蒋强..基于基因芯片数据的基因调控网络的重构及其疾病学应用[D].上海交通大学,2009:
  • 2Penfold CA, Wild DL. How to infer gene networks from expression profiles, revisited. Interface Focus, 2011, 1 (6): 857-870. 被引量:1
  • 3徐红林..基因调控网络的建模及其结构分解方法研究[D].江南大学,2010:
  • 4Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn, 1992, 9(4): 309-347. 被引量:1
  • 5Wallace CS, Korb KB. Learning linear causal models by MML sampling // Causal models and intelligent data management. Berlin: Springer Berlin Heidelberg, 1999. 89-111. 被引量:1
  • 6Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. Cambridge: The MIT Press, 2000. 被引量:1
  • 7O'Donnell R, Nicholson A, Han B, Korb K, Alam M, Hope L. Causal discovery with prior information II Advances in Artificial Intelligence. Springer. 2006, 1162-1167. 被引量:1
  • 8Kauffman S, Peterson C, Samuelsson B, Troein C. Random Boolean network models and the yeast transcriptional network. Proc Nat/ Acad Sci USA, 2003, 100(25): 14796-14799. 被引量:1
  • 9Zheng P, Griswold M, Hassold T, Hunt P, Small C, Ye P. Predicting meiotic pathways in human fetal oogenesis. Bio/ Reprod, 2010, 82(3): 543-551. 被引量:1
  • 10Fukumizu K, Bach FR, Jordan MI. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. J Mach Learn Res, 2004, 5:73-99. 被引量:1

二级参考文献52

  • 1聂文广,刘惟一,杨运涛,杨明.基于信息论的Bayesian网络结构学习算法研究[J].计算机应用,2005,25(1):1-3. 被引量:6
  • 2冀俊忠,阎静,刘椿年.基于I-B&B-MDL的贝叶斯网结构学习改进算法[J].北京工业大学学报,2006,32(5):436-441. 被引量:5
  • 3NILSSON N J.人工智能[M].郑扣根,庄越挺,译.北京:机械工业出版社,2006. 被引量:1
  • 4Heckerman D. A tutorial on learning with Bayesian networks.In: Jordan MI, ed. Learning in graphical models. USA: MIT Press, 1998,301~354. 被引量:1
  • 5Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol, 2000,7:601~620. 被引量:1
  • 6Imoto S, Goto T, Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Par Symp Biocomput,2002,7:175~186. 被引量:1
  • 7Hartemink AJ, Gifford DK, Jaakkola TS, Young RA. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Par Symp Biocomput, 2001,6:422~433. 被引量:1
  • 8Pe'er D, Regev A, Elidan G, Friedman N. Inferring subnetworks from perturbed expression profiles. Bioinformatics,2001,17:S215~S224. 被引量:1
  • 9Yoo C, Thorsson V, Cooper GF. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. Pac Symp Biocomput, 2002,7:498~509. 被引量:1
  • 10Smith VA, Jarvis ED, Hartemink AJ. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 2002,18:S216~S224. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部