期刊文献+

大学课程贝叶斯网络模型研究

Research on Bayesian Networks Model of University Courses
下载PDF
导出
摘要 提出一种大学课程关系的贝叶斯网络构造方法,以学生课程考试成绩作为数据样本,以基于信息论的结构学习算法构造无向图,最后以课程开设的先后顺序给边定向,得到课程依赖关系的贝叶斯网络,并以数理统计的方法学习其条件概率表。该模型直观的反映了课程间的依赖联系,而条件概率表则量化了联系的紧密程度,对大学课程的设置和编排具有指导作用,对学生成绩具有预测能力。 University courses are not isolated settings; there is a certain link between them. This paper presents a construction method for university courses relationship Bayesian networks, which use the examination results of students' courses as data sample, undirected graph was constructed with structure learning algorithm based on information theory, and its edges were oriented according to the time order of courses opening, the Bayesian network of courses dependency relationship was obtained, and its condition probability table was learned by mathematical statistics method. This model had represented the dependence relation of courses intuitively, and the condition probability table quantified tightness of relationship, it plays guidance role to the setting and arrangement of university courses, it has the prediction ability to the student achievement.
出处 《贵州大学学报(自然科学版)》 2009年第2期81-84,共4页 Journal of Guizhou University:Natural Sciences
基金 昆明理工大学校基金资助项目(2007-55)
关键词 贝叶斯网络 无向图 结构学习 条件概率表 Bayesian network undirected graph structure learning condition probability table
  • 相关文献

参考文献5

二级参考文献23

  • 1J Pearl. Probabilistic Reasoning inIntelligent Systems: Network of Plausible Inference. San Francisco, CA: Morgan Kaufmann,1988 被引量:1
  • 2J Suzuki. A construction of bayesian networks from databases based on a MDL scheme.In: Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo, CA: MorganKaufmann, 1993. 266~273 被引量:1
  • 3Y Xiang, S K M Wong. Learning conditional independence relations from aprobabilistic model. Department of Computer Science, University of Regina, CA, Tech Rep:CS-94-03, 1994 被引量:1
  • 4D Heckerman. Learning bayesian network: The combination of knowledge andstatistical data. Machine Learning, 1995, 20(2): 197~243 被引量:1
  • 5J Cheng, D A Bell, W Liu. Learning belief networks from data: An information theorybased approach. In: Proc of the 6th ACM Int'l Conf on Information and KnowledgeManagement. Las Vegas,USA:ACM Press, 1997. 325~331 被引量:1
  • 6S K M Wong. An extended relational data model for probabilistic reasoning. Journalof Intelligent Information Systems, 1997, 9(2): 181~202 被引量:1
  • 7S K M Wong, C J Butz, D Wu. On the implication problem for probabilisticconditional independence. Department of Computer Science, University of Regina, CA, TechRep: CS-99-03, 1999 被引量:1
  • 8D Heckerman. A bayesian approach to learning causal networks. Microsoft Research,Microsoft Corporation, Tech Rep: MSR-TR-95-04, 1995 被引量:1
  • 9C Beeri, R Fagin, D Maier et al. On the desirable properties of acyclic databaseschemes. Journal of ACM, 1983, 30(3): 479~513 被引量:1
  • 10C. C. Chibelushi, F. Deravi, J. S. D. Mason. A review of speech-based bimodal recognition, IEEE Trans. Multimedia,2002, 4(1): 23-37. 被引量:1

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部