期刊文献+

基于依赖结构和Gibbs Sampling的离散数据聚类

Clustering of Discrete Data Based on Dependency Structure and Gibbs Sampling
下载PDF
导出
摘要 建立了一种新的离散数据聚类方法,该方法结合变量之间的依赖结构和Gibbs sampling进行离散数据聚类,能够显著提高抽样效率,并且避免使用EM算法进行聚类所带来的问题。试验结果表明,该方法能够有效地进行离散数据的聚类。 in this paper, a new method of clustering discrete data is presented. The dependency structure is combined with the Gibbs sampling to cluster. The efficiency of sampling can be markedly improved and the problems resulted from EM algorithm can be avoided. Experimental results show that this method can effectively cluster discrete data.
出处 《计算机工程》 CAS CSCD 北大核心 2006年第9期28-30,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60275026) 上海市重点学科(第二期)基金资助项目(P1601) 上海市教委重点基金资助项目(05zz66)
关键词 聚类 离散数据 依赖结构 GIBBS抽样 MDL标准 Clustering Discrete data Dependency structure Gibbs sampling MDL criterion
  • 相关文献

参考文献5

二级参考文献13

  • 1Pearl J.. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, California: Morgan Kaufmann, 1988, 117~133 被引量:1
  • 2Xiang Y., Wong S.K.M., Cercone N.. A 'Microscopic' study of minimum entropy search in learning decomposable Markov networks. Machine Learning, 1997, 26(1): 65~92 被引量:1
  • 3Zhen Z., Yeung R.W.. On characterization of entropy function via information inequalities. IEEE Transactions on Information Theory, 1998, 44(4): 1440~1452 被引量:1
  • 4Buntine W.L.. Chain graphs for learning. In: Proceedings of the 17th Conference Artificial Intelligence, San Francisco, Morgan Kaufmann, 1995, 46~54 被引量:1
  • 5Heckerman D.. Bayesian networks for data mining. Data Mining and Knowledge Discovery, 1997, 1(1): 79~119 被引量:1
  • 6Chow C.K., Liu C.N.. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 1968, 14(3): 462~467 被引量:1
  • 7Mao S.S., Wang J.L., Pu X.L.. Advanced Mathematical Statistics. Beijing: Higher Education Press, 1998(in Chinese)(茆诗松, 王静龙, 濮晓龙. 高等数理统计. 北京: 高等教育出版社, 1998) 被引量:1
  • 8Geman S., Geman D.. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721~742 被引量:1
  • 9Domingos P., Pazzani M.. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 1997, 29(2~3): 103~130 被引量:1
  • 10Cheng J., Greiner R., Kelly J.. Learning Bayesian networks from data: An efficient approach based on information-theory. Artificial Intelligence, 2002, 137(1~2): 43~90 被引量:1

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部