期刊文献+

多项式与SVM预测模型的理论分析及应用比较 被引量:1

Theoretic analysis and application comparison between the polynomial model and the support vector machine prediction model
下载PDF
导出
摘要 标准支持向量机(SVM)及其改进形式的最小二乘支持向量机(LS-SVM)基于结构风险最小化,成功解决了多项式模型在预测方面所面临的问题;文章首先从理论上分析了SVM模型比多项式回归模型在预测方面更具有优越性;具体实验结果表明,SVM模型预测精度高,抗干扰能力强,更适合在预测方面的应用。 The standard support vector machine(SVM) and its advanced form--the least squares support vector machine (LS-SVM) are based on the principle of structural risk minimization. The prediction model based on the LS-SVM can successfully solve the problems that the polynomial prediction moded encounters. The paper analyzes the superiority of the SVM model over the polynomial model theoretically. Experiment is also made. The experiment result shows that'the SVM model is more accurate and more robust in noise resistance, and thus more suitable for prediction.
作者 孙林 杨世元
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第9期1481-1484,1493,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(70672096)
关键词 多项式模型 支持向量机 年发电量 polynomial model support vector machine annual power generation
  • 相关文献

参考文献8

二级参考文献38

  • 1白建社,盛戈皞,江秀臣,曾奕.基于移动时间窗的直流局部放电特征提取方法[J].电力系统自动化,2005,29(14):55-59. 被引量:13
  • 2江亮,刘健,潘双夏.基于支持向量机的加工误差预测建模方法研究[J].组合机床与自动化加工技术,2005(8):13-15. 被引量:7
  • 3MANSOR M, GHANI A B A, GHOSH P S. Partial Discharge Pattern Analysis Using Statistical Technique in XLPE Cable Under Various Soil Conditions. In: Proceedings of 2002 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Cancun(Mexico), 2002. Piscataway(NJ, USA) :IEEE, 2002. 707-711. 被引量:1
  • 4MORSHUIS P, HOOGENRAAD G. Partial Discharge Diagnostics for DC Equipment. In: Conference Record of the1996 IEEE International Symposium on Electrical Insulation,Vol 1. Montreal (Canada), 1996. New York(NY, USA):IEEE, 1996. 407-410. 被引量:1
  • 5A J Smola,B Scholkopf.A tutorial on support vector regression[D].RoyalHolloway College,University of London,UK,1998. 被引量:1
  • 6U Thissen,R van Brakel,A P de Weijer,et al.Using support vector machines for time series prediction[J].Chemometrics and Intelligent Laboratory Systems(S0899-7667),2003,69:35-49. 被引量:1
  • 7Cherkassky V,Ma Y.Comparison of model selection for regression[J].Neural Computation(S0169-7439),2003,15(7):1691-1714. 被引量:1
  • 8Smola A,Mtirata N,Scholkopf B,Muller K.Asymptotically optimal choice of -loss for support vector machines[C]// proceedings of ICANN,1998. 被引量:1
  • 9V Vapnik.The Nature of Satistical Learning Theory[M].Springer Verlag,1995. 被引量:1
  • 10V Vapnik.Satistical Learning Theory[M].Wiley,1998. 被引量:1

共引文献104

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部