期刊文献+

基于加权支持向量回归的在线训练算法及应用 被引量:5

On-line Training Algorithm and Its Application Based on Weighted SVR
下载PDF
导出
摘要 针对时变系统的在线辨识问题,提出了一种加权支持向量回归方法,根据时间信息给予历史数据不同的加权,实现了精确在线训练算法,在保持精度的同时避免了采集到新样本时重复训练,大大加快了训练速度。研究了该算法的复杂度并加以改进。将该方法应用于氯气投加系统过程模型的在线辨识,在训练速度和精度上都较为满意,这一结果说明了该算法的有效性。 Aiming at the problem of on-line identification of time-varying system, a weighted SVR (support vector regression) method was proposed which assigned different weighting factors to samples according to the time information. To avoid repetitious training when new sample arrived, an accurate on-line training algorithm was developed to implement the method by which training speed was increased greatly while accuracy was kept same. The complexity of the algorithm was explored and performance was improved. The proposed algorithm was applied to the on-line identification of chlorine dosing system. The result shows that the training rate and accuracy are satisfactory and the algorithm is effective.
作者 刁翔 李奇
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3970-3973,共4页 Journal of System Simulation
关键词 加权支持向量回归 在线辨识 精确在线训练 氯气投加系统 weight SVR on-line identification accurate on-line training chlorine dosing system
  • 相关文献

参考文献8

二级参考文献14

  • 1杜树新,吴铁军.回归型加权支持向量机方法及其应用[J].浙江大学学报(工学版),2004,38(3):302-306. 被引量:22
  • 2王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999.. 被引量:40
  • 3VAPNIK V N. The nature of statistical learning theory[M]. Berlin: Springer, 1995. 被引量:1
  • 4CAUWENBERGHS G, POGGIO T. Incremental and decremental support vector machine[J]. Advances in Neural Information Processing Systems, 2001, 13: 409-415. 被引量:1
  • 5MARTIN M. On-line support vector machines for function approximation[R]. Barcelona: Software Department, Universitat Politecnica de Catalunya, 2002. 被引量:1
  • 6MA Jun-shui, THEILER J, PERKINS S. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15(11): 2683-2704. 被引量:1
  • 7LEHMAN B, BENTSMAN J, LUNEL S V, et al. Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior[J]. IEEE Transactions on Automatic Control, 1994, 39: 898-912. 被引量:1
  • 8CAO Y Y, FRANK P M. Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(2): 200-211. 被引量:1
  • 9A J Smola,B Scholkopf.A tutorial on support vector regression[D].RoyalHolloway College,University of London,UK,1998. 被引量:1
  • 10U Thissen,R van Brakel,A P de Weijer,et al.Using support vector machines for time series prediction[J].Chemometrics and Intelligent Laboratory Systems(S0899-7667),2003,69:35-49. 被引量:1

共引文献133

同被引文献32

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部