期刊文献+

软硬结合的快速模糊C-均值聚类算法的研究 被引量:7

Research of fast fuzzy C-means clustering algorithm based on soft and hard clustering
下载PDF
导出
摘要 讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多的速度完成,将硬聚类中心作为模糊聚类中心的迭代初值,从而提高模糊C-均值聚类算法的收敛速度,这对于大量数据的聚类是很有意义的。用数据仿真验证了这种快速模糊C-均值聚类算法比模糊C-均值算法迭代调整过程短,收敛速度快,聚类效果好。 This paper discusses how to improve the fuzzy C-means clustering algorithm( FCM ).On the basis of FCM,the paper puts forward a kind of fast fuzzy C-means clustering algorithm based on soft and hard clustering.The fast FCM inserts one layer of hard C-means clustering algorithm in front of FCM.The hard C-means clustering algorithm can be finished at much higher speed than FCM.In order to improve the convergence speed of FCM,the authors regard the cluster centers of hard C-means clustering algorithm as the initial value of fuzzy cluster centers.It is very meaningful for a large number of data clustering.In addition,this paper proves that the fast fuzzy C-means clustering algorithm has a shorter adjusting iteration course and a faster convergence speed than FCM and the clustering result achieved from data emulation is very ideal.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第22期172-174,共3页 Computer Engineering and Applications
关键词 模糊 C-均值算法 模糊聚类 软聚类 硬聚类 fuzzy C-means clustering algorithm( FCM ) fuzzy clustering soft clustering hard clustering
  • 相关文献

参考文献5

二级参考文献19

  • 1杨斌,孟志青.一种文本分类数据挖掘的技术[J].湘潭大学自然科学学报,2001,23(4):34-37. 被引量:10
  • 2Zhou Haofeng, Lou Yubo. Refining Web Authoritative Resource by Frequent Structures[C]. In: Proceedings of the Seventh International Database Engineering and Applications Symposium(IDEAS2003),2003. 被引量:1
  • 3Wu Fei, Gardarin G. Gradual Clustering Algorithm[C]. In: Proceedings of Seventh Intematkmal Conference on Database Systems for Advanced Applications, 2001: 48-55. 被引量:1
  • 4Lin K I, Kondadadi R. A Similarity-based Soft Clustering Algorithm for Documents[C]. In: Proceedings of Seventh International Conference on Database Systems for Advanced Applications, 2001:40-47. 被引量:1
  • 5Zhexue Huang,Michael K Ng.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Trans on Fuzzy Systems,August,1999,7(4):446-452. 被引量:1
  • 6Zhexue Huang.A fast clustering algorithm to cluster very large categorical data sets in data mining[A].Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C].USA:ACM Press,1997.1-8. 被引量:1
  • 7Kononenko I.Estimating attributes:Analysis and extensions of Relief[A].Proceedings of the 7th European Conference on Machine Learning[C].Berlin:Springer,1994.171-182. 被引量:1
  • 8Kira K,Rendell L A.A practical approach to feature selection[A].Proceedings of the 9th International Workshop on Machine Leaning[C].San Francisco,CA:Morgan Kaufmann,1992.249-256. 被引量:1
  • 9Duda R O,Hart P E.Pattern classification and scene analysis[M].New York:John Wiley & Sons,1973.89-91. 被引量:1
  • 10Hathaway R J,Bezdek J C.Nerf C-means:Non-Euclidean relation fuzzy clustering[J].Pattern recognition,1994,27(3):429-437. 被引量:1

共引文献142

同被引文献88

引证文献7

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部