期刊文献+

舰艇编队信息融合中模糊C-均值算法改进研究 被引量:1

An Improved Adaptive Fuzzy C-means Algorithm for Information Fusion of Navy Armada
下载PDF
导出
摘要 在分析舰艇编队信息处理融合的基础上,提出舰艇编队信息融合体系结构、模型和实现框架。针对原C-均值算法在处理数据时的不合理性,提出了改进的模拟C-均值算法,提高分类效果,满足信息融合的实时要求和可靠性要求。 On the base of the analysis of information transaction platform and work sequence of the integrated operation of intelligence transaction of naval information,its system framework,model,and actual frame was presented.According to the shortcomings on the C-means algorithms among information transaction,then the improved fuzzy C-means arithmetic was used in the information fusion of intelligence transaction of naval formation,which basically fulfills the need of real-time and reliability of the information fusion of intelligence transaction of naval formation.
出处 《舰船电子工程》 2012年第8期50-51,92,共3页 Ship Electronic Engineering
关键词 信息融合 C-均值算法 information fusion fuzzy C-means algorithm
  • 相关文献

参考文献12

二级参考文献39

共引文献62

同被引文献11

  • 1Nandi A K,Azzouz E E. Algorithms for Automatic Moudula-tion Recognition of Communication Signals[J]. IEEE Transac-tions on Communication, 1998,46(4) ? 431-436. 被引量:1
  • 2Helmy,M. O, Zaki, F. W. Identification of Linear Bi-Dimen-sional Digital Modulation Schemes via Clustering Algorithms.International Conference on Computer Engineering Systems,2009:385-390. 被引量:1
  • 3Mavroforakis. ME,Sdralis. M.,Theodoridis. S. A Geomet-ric Nearest Point Algorithm for the Efficient Solution of theSVM Classification Task[J], IEEE Transaction on Neural Net-works, 2007,18(5) : 1545-1549. 被引量:1
  • 4He Xu. An Adaptive Image Watermarking Algorithm Based onNeural Network. Intelligent Computation Technology and Au-tomation (ICICTA), 2011 International Conference on,2011,2:408-411. 被引量:1
  • 5Orlic, V. D.,Dukic, M. L. Automatic modulation classifica-tion algorithm using higher-order cumulates under real-worldchannel conditions. Communications Letters, IEEE,2009,13?12):917-919. 被引量:1
  • 6Engin Avci,Derya Avci. Nandi. A novel approach for digitalradio signal classification: Wavelet packet energy-multiclasssupport vector machine. Expert Systems with Applications,2008,34(3):2140-2147. 被引量:1
  • 7J C. Bezdek,R. Ehrlich.,W. Full. FCM: The fuzzy c-meansclustering algorithm[J]. Computers Geosciences, 1984? 10(2-3);191-203. 被引量:1
  • 8B. Yakoub, M. Farid. Toward and Optimal SVM Classifica-tion System for Hyper spectral Remote Sensing Image [J].IEEE Transaction on Geosciences and Remote Sensing, 2006,44(ll):3374-3385. 被引量:1
  • 9HanifiGuldemlr, AbdulkadirSengur. Comparison of clusteringalgorithms for analog modulation classification. Expert Sys-tems with Applications, 2006,30 : 642-649. 被引量:1
  • 10Dobre, O. A.,Abdi, A.,Bareess, Y.,et al. Survey of auto-matic modulation classification techniques : classical approaches andnew trends[J]. Communications, 2007,1(2) : 137-156. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部