期刊文献+

基于数据分散度聚类的浆纱质量指标建模与仿真 被引量:1

Slashing Quality Index Modeling and Simulation Based on Data Dispersion Clustering
下载PDF
导出
摘要 针对典型划分式聚类算法对噪声和孤立点数据敏感问题,提出一种基于数据分散度的聚类算法。该算法定义数据分散度指标,将其引入非欧氏距离函数建立相似性度量实现数据的聚类,并根据基于改进划分系数的有效性函数获取最佳聚类数。将其应用于纺织浆纱过程质量指标建模中,采用径向基神经网络建立上浆率质量指标模型,通过该聚类算法确定隐层节点数,求取径向基函数中心。实验结果表明所提及的基于数据分散度的聚类算法对噪声和孤立点数据敏感度低,所建立的上浆率质量指标模型具有较高精度。 For the sensitivity of noise and outliers data in the typical partitioning clustering algorithm, a clustering algorithm based on data dispersion was proposed. The data dispersion was defined and introduced to a non-Euclidean distance. The similarity metric was established, and the data clustering was realized. The optimal clustering number was obtained by the validity function based on improved partition coefficient. Then the proposed clustering algorithm was applied to quality index model in slashing process. A size add-on quality index model was built by radial basis function neural networks. The node number of hidden layer was determined and the center of radial basis function was obtained by the proposed clustering algorithm. The empirical result shows that the clustering result is insensitive to noise and outliers data, and the accuracy of size add-on quality index model is higher.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第8期1707-1714,共8页 Journal of System Simulation
基金 国家自然科学基金(61102124) 辽宁省自然科学基金(2015020064)
关键词 质量指标模型 聚类 数据分散度 非欧氏距离 纺织浆纱过程 quality index model clustering data dispersion non-Euclidean distance textile slashing process
  • 相关文献

参考文献20

  • 1Xu R, Wunsch D. Survey of Clustering Algorithms [J]. IEEE Transactions on Neural Networks (S1045-9227), 2005, 16(3): 645-678. 被引量:1
  • 2Jain A K. Data Clustering: 50 Years beyond K-means [J]. Pattern Recognition Letters (S0167-8655), 2010, 31 (8): 651-666. 被引量:1
  • 3Modha D S, Spangler W S. Feature Weighting in K-means Clustering [J]. Machine Learning (S0885-6125), 2003, 52(3): 217-237. 被引量:1
  • 4Xie J Y, Jiang S, Xie W, et al. An Efficient Global K-means Clustering Algorithm [J]. Journal of Computers (S 1796-203X), 2011, 6(2): 271-279. 被引量:1
  • 5Shahnewas S. M, Rahman M A, Mahmud H. A Self Acting Initial Seed Selection Algorithm for K-means Clustering Based on Convex-Hull [M]. Informatics Engineering and Information Science, Germany: Springer Berlin Heidelberg, 2011:641-650. 被引量:1
  • 6张健沛,杨悦,杨静,张泽宝.基于最优划分的K-Means初始聚类中心选取算法[J].系统仿真学报,2009,21(9):2586-2590. 被引量:62
  • 7Cai W L, Chen S C, Zang D Q. Fast and Robust Fuzzy C-means Clustering Algorithms Incorporating Local Information for Image Segmentation [J]. Pattern Recognition (S0031-3203), 2007, 40(3):825-833. 被引量:1
  • 8Hung C C, Kulkami S, Kuo B C. A New Weighted Fuzzy C-means Clustering Algorithm for Remotely Sensed Image Classification [J]. IEEE Journal of Selected Topics in Signal Processing (S1932-4553), 2011, 5(3): 543-553. 被引量:1
  • 9Chaira T. A Novel Intuitionistic Fuzzy C means Clustering Algorithm and Its Application to Medical Images [J]. Applied Soft Computing (S1568-4946),2011,11(2):1711-1717. 被引量:1
  • 10袁英,陈立潮,任姚鹏,王秀慧.结合引力的模糊C-值聚类算法研究[J].计算机应用与软件,2010,27(8):271-272. 被引量:2

二级参考文献42

共引文献130

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部