期刊文献+

高阶统计与局部几何特征结合的货币图像识别

Currency image recognition combining high-order statistics and local geometric characteristics
下载PDF
导出
摘要 由于硬币具有多样性特点及现代假币手段的隐蔽性,这给硬币鉴伪带来了很大的困难,为此提出了一种基于高阶统计量与局部几何特征相结合的硬币图像识别方法。利用图像边缘纹理和图像面积的比值不变性,给出了一种变阈值的Robert边缘检测算法。将边缘图像的不变矩、纹理特征以及区域占有率等高阶统计量,以及不同版本硬币的局部几何特征量作为硬币图像的特征向量,采用模糊C均值聚类方法对其进行聚类分析,从而实现硬币的分类识别。实验结果表明该方法的识别率可以达到98.5%以上,并对环境光照的变化有很强的适应性。 Because of the diversity of different coins and the concealment of modern false coins, it has great difficulties to dis- criminate coins. Thus an image recognition method based on high-order statistics and local geometric characteristics is pro- posed. With the ratio invariance of image edge texture and image area, a variable threshold-based Robert edge detection algo- rithm is given. High-order features with the invariant moment, texture characteristic and regional share of the edge image, and lo- cal geometric features of different versions of the coins are selected as coin image feature vectors. The feature vectors are clus- tered using fuzzy C-means clustering, to realize the classification recognition of the coins. Experimental results show that the recognition rate of the proposed method can reach 98.5%, and it is adaptive to the change of environment light.
出处 《计算机工程与应用》 CSCD 2013年第23期141-144,185,共5页 Computer Engineering and Applications
关键词 图像识别 特征提取 高阶统计量 聚类分析 image recognition feature extraction high-order statistics clustering analysis
  • 相关文献

参考文献16

  • 1吕冰,叶婷婷,赵剑锋.基于电磁检测技术的硬币检伪装置[J].仪表技术与传感器,2010(12):80-82. 被引量:4
  • 2Kampel M, Huber-Moerk R, Zaharieva M.lmage-based retrieval and identification of ancient coins[J].lEEE Intelligent Sys- tems, 2009,24( 2 ) : 26-34. 被引量:1
  • 3Khashman A, Sekeroglu B, Dimililer K.Intelligent coin iden- tification system[C]//IEEE International Symposium on Intel- ligent Control,2006: 1226-1230. 被引量:1
  • 4Bremananth R, Ralaji B, Sankari B, et al.A new approach to coin recognition using neural pattern analysis[C]//IEEE INDICON Conference, 2005 : 366-370. 被引量:1
  • 5Fukumi M,Omatu S,Takeda F, et al.Rotation-invariant neu- ral pattern recognition system with application to coin rec- ognition[C]//IEEE Intemational Join Conference on Neural Networks, 1991,3(2) :272-279. 被引量:1
  • 6毕晓君,孙晓霞.基于蚁群算法的硬币识别研究[J].哈尔滨工程大学学报,2006,27(6):882-885. 被引量:16
  • 7A1-Zoubi H R.Efficient coin recognition using a statistical approach[C]//2010 IEEE International Conference on Electro/ Information Technology(EIT) ,2010: 1-5. 被引量:1
  • 8Chen C M,Zhang S Q,Chen Yuefen.A coin recognition sys- tem with rotation invariance[C]//Intemational Conference on Machine Vision and Human-Machine Interface(MVHI),2010: 755-757. 被引量:1
  • 9Huber R,Ramoser H,Mayer K,et al.Classification of coins using an eigenspace approach[J].Pattern Recognition Letters, 2005,26 : 61-75. 被引量:1
  • 10Davis L S, Johns S A,Aggarwal J K.Texture analysis using generalized co-occurrence matrices[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1 (3) : 251-259. 被引量:1

二级参考文献28

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部