期刊文献+

基于客户聚类的商品推荐方法的研究 被引量:3

Research of Commodity Recommendation System Based on Customer Clustering
下载PDF
导出
摘要 文中给出了一种新的数据源的获取方法,使用Web2.0技术直接从客户浏览行为中获取需要的数据,避免了传统Web使用数据挖掘时日志数据预处理时的大量繁杂工作,减少了噪声数据,提高了数据准确性。根据所获数据建立用户-商品矩阵,计算此矩阵的欧氏距离,在此基础上使用聚类算法将客户进行聚类,根据聚类结果对新来的客户进行有目的的商品推荐,并对聚类结果进行跟踪评价。目的是为了提高电子商务网站的个性化服务。 In this paper, proposed a new approach to achieve the data in order to cluster the customers; use the Web2.0 technology to acquire information from the behavior of customers who visited the Web site. Therefore, can avoid the lots of heavy work of the pretreatment of Web log data. Then, build the customer- commodity matrix and figure out the distance of Euclidean, and cluster the customers by using the arithmetic that is based on commodity recommendation of clustering. Based on the clustering result, recommend commoditiea to the new customers in order to see their reactions, and evaluate the result of customers clustering.
出处 《计算机技术与发展》 2008年第7期212-214,221,共4页 Computer Technology and Development
基金 辽宁省教育科学研究项目(05L338)
关键词 电子商务Web使用挖掘 商品推荐 个性化 客户聚类 electronic commerce web use mining commodity recommendation personalization customers clustering
  • 相关文献

参考文献5

  • 1Eirinaki M, Vazirgiannis M. Web Mining for Web Personalization[J]. ACM Transactions on Intemate Technology,2003,3 (1):1-27. 被引量:1
  • 2Baglioni M, Ferram U, Romei A, Preproeessing and Mining Web Log Data for Web Personalization[ J ]. Advances in Artificial Intelligence,2003(2) :237 - 249. 被引量:1
  • 3杨小兵..聚类分析中若干关键技术的研究[D].浙江大学,2005:
  • 4吕亚兵..WEB站点日志数据挖掘的研究与实现[D].武汉理工大学,2006:
  • 5梁伟,张慧颖.电子商务推荐系统中推荐模型的研究[J].计算机工程与应用,2006,42(36):183-186. 被引量:3

二级参考文献9

  • 1Aggarwal C,Yu P.Data mining techniques for personalization[J].IEEE Data Engineering Bulletin,2000,23(1):4-9. 被引量:1
  • 2Sanjay M,Sourav S B,Ng W-K,et al.Research issues in Web data mining[C]//Proceedings of Data Warehousing and Knowledge Discovery,First International Conference:DaWaK' 99,1999:303-312. 被引量:1
  • 3Mobasher B,Dai H,Luo T,et al.Discovery of aggregate usage profiles for Web personalization[C]//Proc of the WebKDD 2000 Workshop at the ACM SIGKDD 2000,Boston,2000:142-151. 被引量:1
  • 4Liang Wei,Zhang Hui-ying.An intelligent algorithm of data preprocessing in Web usage mining[C]//Proceeding of WCICA'04,2003:3119-3123. 被引量:1
  • 5Lin W,Alvarez S A,Ruiz C.Efficient adaptive-support association rule mining for recommender systems[J].Data Mining and Knowledge Discovery,2002,6 (1):83-105. 被引量:1
  • 6Yang Qiang,LI Tian-yi,Wang Kc.Building association-rule based sequential classifiers for Web-document prediction[J].Data Mining and Knowledge Discovery,2004,8(3):253-273. 被引量:1
  • 7Xiao Ji-tian,Zhang Yan-chun,Jia Xiao-hua,et al.Measuring similarity of interests for clustering web-users[C]//Proceediugs of the 12th Australasian Conference on Database Technologies,2001:107-114. 被引量:1
  • 8Cadez I,Heckerman D,Meek C,et al.Model-based clustering and visualization of navigation patterns on a Web site[J].Data Mining and Knowledge Discovery,2003,7 (4):399-424. 被引量:1
  • 9Mobasher B,Dai H.Improving the effectiveness of collaborative filtering on anonymous web usage data[C]//Anand S S.Proc of the IJCAI2001 Workshop on Intelligent Techniques for Web Personalization (ITWP01).Berlin:Springer-Verlag,2001:49-56. 被引量:1

同被引文献22

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部