期刊文献+

基于二阶段相似度学习的协同过滤推荐算法 被引量:8

Collaborative filtering recommendation algorithm based on two stages of similarity learning
下载PDF
导出
摘要 针对传统的基于最近邻协同过滤推荐算法中计算相似度存在的缺陷,提出了一种基于二阶段相似度学习的协同过滤推荐算法,该算法旨在通过较少的迭代计算改善推荐算法性能。它以既约梯度法迭代寻优为主、最近邻算法为辅,通过邻居的海选和精选,最终提高了相似度的计算精度,改善了误差性能。实验表明,在一定条件下该算法不仅在误差性能上优于传统的推荐算法,而且其算法收敛速度快,可实现相似度参数动态调整和分布式计算。 In order to improve the accuracy of similarity calculation and recommendation performance in the traditional collabo- rative filtering recommender system, this paper proposed a collaborative filtering recommendation algorithm based on two stages of similarity learning. The algorithm took advantage of the nearest neighbor algorithm on the first stage to get candidate neigh- bors and used the reduced gradient method on the second stage to learn similarity. Eventually, the algorithm achieved a higher accuracy of similarity, The experimental results show that the proposed algorithm, on some conditions, not only outperforms the traditional method in terms of the error performance, but also has a fast convergence speed, which can make dynamic simi- larity adjustment and distributed calculation possible.
作者 沈键 杨煜普
出处 《计算机应用研究》 CSCD 北大核心 2013年第3期715-719,共5页 Application Research of Computers
基金 国家"863"计划资助项目(2011AA040605)
关键词 二阶段 相似度学习 协同过滤 既约梯度法 K-最近邻算法 two stages similarity learning collaborative filtering reduced gradient method K-nearest neighbor( K-NN )
  • 相关文献

参考文献16

  • 1MICHAEL J, ANDREAS T, ROBERT L. Combining predictions for accurate recommender systems[ C]//Pmc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2010:693- 702. 被引量:1
  • 2昊金龙.NetflixPrize中的协同过滤算法[D].北京:北京大学,2010. 被引量:1
  • 3ROBERT B, YEHUDA K, CHRIS V. Modeling relationships at multi- ple scales to improve accuracy of large recommender systems [ C ]//Proc of the 13th ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining. New York :ACM Press ,2007:95-104. 被引量:1
  • 4SU Xiao-yuan. Collaborative filtering recommendation using machine learning and statistical techniques [D]. Boca Raton:Florida Atlantic University, 2008. 被引量:1
  • 5查文琴,梁昌勇,曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,19(6):69-71. 被引量:20
  • 6项亮..动态推荐系统关键技术研究[D].中国科学院大学,2011:
  • 7DAVID P, ERIC H, STEVE L, et al. Collaborative filtering by per- sonality diagnosis: a hybrid memory and model based approach [ C ]// Proc of National Conference on Artificial Intelligence. San Francisco : Morgan Kaufmann Publishers Inc ,2000:473-480. 被引量:1
  • 8RASHID A M, LAM S K, KARYPIS G, et al. ClustK-NN: a highly scalable hybrid model & memory-based CF algorithm [ C ]//Pmc of the 12th ACM SIGKDD International Conference on KDD and Data Mining. New York:ACM Press,2006. 被引量:1
  • 9CHEN Zhi-min, JIANG Yi, ZHAO Yao. A collaborative filtering re- commendation algorithm based on user interest change and trust evalu- ation[ J]. International Journal of Digital Content Technology and its Applications,2010,4 (9) : 106- 113. 被引量:1
  • 10PAUL R, NEOPHYTES L, MITESH S, et al. GroupLens: an open architecture for ,collaborative filtering of netnews [ C ]//Proc of ACM Conference on Computer Supported Cooperative Work. New York: ACM Press, 1994 : 175-186. 被引量:1

二级参考文献26

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:102
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3程岩,肖小云,吴洁倩.基于聚类分析的电子商务推荐系统[J].计算机工程与应用,2005,41(24):175-177. 被引量:12
  • 4游文,叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,16(9):70-72. 被引量:54
  • 5Resnick, Varian. Recommender systems[J]. Communications of the ACM, 1997,40(3) :56 - 58. 被引量:1
  • 6Breese J, Hecherman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[ C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI - 98). Sar Francisco: ACM Press, 1998 : 43 - 52. 被引量:1
  • 7Sarwar B, Karypis G, Konstan J, et al. Item- based eollabo-rative filtering recommendation algorithms[C]//Proceeding of the 10th International World Wide Web Conference. New York:ACM Press,2001:285 - 295. 被引量:1
  • 8SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collabo- rative filtering recommendation algorithm[ C ]//Proc of the 10 th Inte- ring World Wide Web Conference. New York: ACM Press,2001: 285- 295. 被引量:1
  • 9GONG Song-jie, YE Hong-wu. Joining user clustering and item based collaborative filtering in personalized recommendation services [ C ]// Proc of International Conference on Industrial and Information Sys- tems. Washington DC : IEEE Computer Society,2009 : 149-151. 被引量:1
  • 10THIESSON B, MEEK C, CHICKERING D M, et al. Learning mix- tures of DAG models [ C ]//Proc of the 14 th Conference on Uncertain- ty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 1998:504-513. 被引量:1

共引文献57

同被引文献66

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部