期刊文献+

结合项目类别信息的协同过滤推荐算法 被引量:6

Collaborative filtering recommendation algorithm using item category information
下载PDF
导出
摘要 针对个性化推荐系统中协同过滤算法面临的数据稀疏问题以及用户相似性度量的不准确,提出了一种结合类别信息的协同过滤推荐算法。该算法利用用户评分数据计算用户之间对类别关注的相似性,并将用户对类别关注的相似性和用户评分相似性进行组合,得到用户综合相似性,从而提高了最近邻居搜索的准确度,缓解了数据稀疏性问题。实验结果表明,该方法能够有效地避免传统相似性度量方法存在的问题,使得数据稀疏性对最终推荐结果的负面影响变小,在一定程度上提高系统的推荐精度。 Aiming at the difficulty of data sparsity and inaccurate user similarity in personalized recommendation systems, a new algorithm of collaborative filtering using item category information was proposed. The algorithm used user rating data to calculate category concern similarity between users. Category concern similarity and user rating similarity had been synthe- sized to get synthetic user similarity, thus the accurate degree of searching nearest neighbor users has been improved and the sparse of rating data problem has been alleviated simultaneously. The experiment shows that the measure can avoid the defects of traditional similarity measure and reduce the negative effect on the final recommendation and provide better reco- mmendation results for the system.
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2010年第6期823-827,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
关键词 协同过滤 推荐系统 用户相似性 平均绝对误差 collaborative filtering recommendation system user similarity mean absolute error
  • 相关文献

参考文献10

  • 1SCHAFER J B, KONSTAN J A, RIEDL J. E-commerce recommendation applications [ J ]. Data Mining and Knowledge Discovery, 2001, 5( 1-2): 115-153. 被引量:1
  • 2HERLOCKER J, O'CONNER M. Clustering items for collaborative filtering [ C]// Proceedings of the ACM SIGIR Workshop on Recommender Systems. New York: ACM Press, 1999: 439-446. 被引量:1
  • 3邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 4王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 5SARWAR B, KARYPIS G, KONSTAN J, et al. Analysis of recommendation algorithms for E-commerce [ C ]// Proceedings of the 2nd ACM Conterence on Electronic Commerce, New York: ACM Press, 2000 : 158-167. 被引量:1
  • 6WOLF J, AGGARWAL C, WU K L, et al. Horting hatches an egg: A new graph--theoretic approach to collaborative filtering [ C ]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 1999, 201-212. 被引量:1
  • 7CHO Y B, CHO Y H, KIM S H. Mining changes in customer buying behavior for collaborative recommendations [ J]. Expert Systems with Applications, 2005, 28 (2) : 359-369. 被引量:1
  • 8LEE J S, JUN C H, LEE J, et al. Classification-based collaborative filtering using market basket data [ J ]. Expert System with Applications, 2005, 29 (3) : 700-704. 被引量:1
  • 9张海鹏,李烈彪,李仙,周亚蜂.基于项目分类预测的协同过滤推荐算法[J].情报学报,2008,27(2):218-223. 被引量:14
  • 10查文琴,梁昌勇,曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,19(6):69-71. 被引量:20

二级参考文献42

共引文献208

同被引文献59

引证文献6

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部