摘要
设D是大于1的正整数,p是不能整除D的素数.本文证明了:当D=3a^2+1,p=4a^2+1,其中a是正整数时,除了(D,p)=(4,5)这一情况以外,方程x^2+D^m=p^n仅有2组正整数解(x,m,n)=(a,1,1)和(8a^3+3a,1,3).根据上述结果得到了该方程解数的最佳上界.
Let D be a positive integer with D 〉 1, and let p be a prime with p + D. In this paper we prove that if D = 3a^2 + 1, and p = 4a^2 + 1, where a is a positive integer, then the equation x^2 + D^m = p^n has only two positive integer solutions (x, m, n) = (a, 1, 1) and (8a^3 + 3a, 1, 3), except for (D,p) = (4, 5). By the above mentioned result, the best upper bound for the number of solutions of this equation is given
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第4期809-814,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10271104)