期刊文献+

关于广义Ramanujan-Nagell方程的一个猜想(英文)

On a Conjecture Concerning the Generalized Ramanujan-Nagell Equation
下载PDF
导出
摘要 设D=3a^2+1,p=4a^2+1是奇素数,其中a是正整数.本文证明了:当a>6·10^(18)时,方程x^2+D^m=p^n恰有2组正整数解(x,m,n)=(a,1,1)和(8a^3+3a,1,3). Let D = 3a^2 + 1 and p = 4a^2 + 1 is an odd prime, where a is a positive integer. In this paper we prove that if a 〉 6 - 10^18, then the equation x62 + Dm = p^n has exactly two positive integer solutions (x,m, n) = (a,1, 1) and (8a^3 + 3a, 1, 3).
作者 乐茂华
出处 《数学进展》 CSCD 北大核心 2008年第4期483-488,共6页 Advances in Mathematics(China)
基金 the National Natural Science Foundation of China(No.10771186) the Guangdong Provincial Natural Science Foundation(No.06029035).
关键词 广义RAMANUJAN-NAGELL方程 解数 上界 generalized Ramanujan-Nagell equation number of solutions upper bound
  • 相关文献

参考文献1

二级参考文献12

  • 1Mahler, K.: Zur Approximation algebraischer Zahler I: Uber den grossten Primteiler binarer Formen. Math.Ann., 107, 691-730 (1933). 被引量:1
  • 2Gel'fond, A. O.: Sur la divisibilitd de la difference des puissances de deux nombres entiers par une puissance d'un ideal premier. Mat. Sb., 7, 7-25 (1940). 被引量:1
  • 3Terai, N.: The diophantine equation a^x +b^y = c^z. Proc. Japan Acad. Ser. A Math. Sci., 70, 22-26 (1994). 被引量:1
  • 4Cao, Z. F.: A note on the diophantine equation a^x + b^y = c^z. Acta Arith., 91, 85-93 (1999). 被引量:1
  • 5Le, M. H.: On the diophantine equation a^x + b^y = c^z. J. Changchun Teachers College Ser. Nat. Sci., 2,50-62 (1985) (in Chinese). 被引量:1
  • 6Terai, N.: The diophantine equation a^x+ b^y= c^z. Ⅲ, Proc. Japan Acad. Ser. A Math. Sci.. 72, 20-22(1996). 被引量:1
  • 7Terai, N.: Applications of a lower bound for linear forms in two logarithms to exponential diophantine equations. Acta Arith., 90, 17- 35 (1999). 被引量:1
  • 8Dong, X. L., Cao, Z. F.: The Terai-Jesmanowicz conjecture concerning the equation a^x+ b^y = c^z. Chinese Math. Ann. Ser. A, 21(A), 709-714 (2000) (in Chinese). 被引量:1
  • 9Bilu, Y., Hanrot, G., Voutier, P. M.: (with an Appendix by Mignotte, M.), Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math., 539, 75-122 (2001). 被引量:1
  • 10Mordell, L. J.: Diophantine Equations, Academic Press, London, 1969. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部