期刊文献+

基于级联网络和图搜索的轨迹模式学习算法 被引量:1

Trajectory Pattern Learning Approach Based on Cascade Competitive Neural Networks and Graph Search Method
下载PDF
导出
摘要 提出了一种基于级联竞争神经网络和有向无环图搜索的运动目标轨迹分布模式提取算法。采用级联竞争神经网络提取不同时序处流矢量的分布,根据轨迹点之间的时序转移关系构造有向无环图,通过深度优先搜索来获取轨迹分布的显式表示,并在此基础上给出了一种基于轨迹点对齐的异常轨迹检测方法。构造的级联网络自动隐含了轨迹点的时序关系,可以处理不同长度轨迹模式的学习问题。不同场景的仿真实验表明此方法可以应用于复杂场景下的目标异常行为检测。 A new motion trajectory learning approach was put forward based on cascade competitive neural networks and directed acyclic graph search method. In this approach, the cascade competitive neural networks was trained to discover the distribution of the flow vectors firstly; and then a directed acyclic graph was constructed according to the time relation of the trajectory points; finally, the depth first search method was adopted to obtain the explicit representation of the trajectory pattern. Based on above works, correspondent method was given to detect the abnormal trajectory. The cascade competitive neural networks represent the flow vectors' time orders impliedly and can deal with the problem of trajectory pattern learning with different length properly. The simulation results of different scenes demonstrate that the method is effective for anomaly detection in complicated environments.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第4期841-845,854,共6页 Journal of System Simulation
基金 国家自然科学基金(60472072) 航空科学基金(04I50370)
关键词 轨迹分析与学习 竞争神经网络 图搜索 异常检测 trajectory analysis and learning competitive neural networks graph search anomaly detection
  • 相关文献

参考文献18

  • 1Johnson N, Hogg D. Learning the Distribution of Object Trajectories for Event Recognition [J]. Image and Vision Computing (S0262-8856), 1996, 14(8): 609-615. 被引量:1
  • 2Johnson N, Gatata A, Hogg D. The Acquisition and Use of Interaction Behavior Models [C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Silver Spring. MD: IEEE Computer Society Press, 1998: 866-871. 被引量:1
  • 3Sumpter N, Bulpitt A. Learning Spatio-temporal Patterns for Predicting Object Behavior [J]. Image and Vision Computing (S0262-8856), 2000, 18(9): 697-704. 被引量:1
  • 4胡卫明,谢丹,谭铁牛,沈俊.轨迹分布模式学习的层次自组织神经网络方法[J].计算机学报,2003,26(4):417-426. 被引量:15
  • 5Weiming Hu, Dan Xie, Tieniu Tan. A Hierarchical Self-organizing Approach for Learning the Patterns of Motion Trajectorie [J]. IEEE Trans on Neural Networks (S0162-8828), 2004, 15(1): 135-144. 被引量:1
  • 6Zhouyu Fu, Weiming Hu, Tieniu Tan. Similarity Based Vehicle Trajectory Clustering and Anomaly Detection [C]// Proceedings of IEEE Conference on Image Processing, ICIP 2005. Genoa, Italy: IEEE Computer Society Press, 2005: 602-605. 被引量:1
  • 7Weiming Hu, Dan Xie, Tieniu Tan, et al. Learning Activity Patterns Using Fuzzy Self-organizing Neural netork [J]. IEEE Trans on Systems, Man and Cybernetics-Part B: Cybernetics (S1083-4419), 2004, 34(3): 1618-1626. 被引量:1
  • 8Shehzad Khalid, Andrew Nafterl. Classifying Spatiotemporal Object Trajectories Using Unsupervised Learning of Basis Function Coefficients [C]// Proceedings of the 3rd ACM International Workshop on Video Surveillance & Sensor Networks, VSSN 2005. Singapore: ACM Press, 2005: 45-51. 被引量:1
  • 9Ownes J, Hunter A. Application of the Self-organizing Map to Trajectory Classification [C]// Proceedings of IEEE Workshop on Visual Surveillance. Dublin, Ireland: IEEE Computer Society Press, 2000: 77-83. 被引量:1
  • 10Piciarelli C, Foresti G L. Toward Event Recognition Using Dynamic Trajectory Analysis and Prediction [C]// Proceeding of IEE International Symposium On Imaging for Crime Detection and Prevention, ICDP 2005. London, UK: The Institution of Electrical Engineers Press, 2005: 131-134. 被引量:1

二级参考文献27

  • 1吴立军,钟世镇,李义凯,赵卫东.扁平足第二跖纵弓疲劳损伤的生物力学机制[J].中华医学杂志,2004,84(12):1000-1004. 被引量:28
  • 2[1]Collins T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):745~746 被引量:1
  • 3[2]Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences. Image and Vision Computing, 2000, 18(9): 105~135 被引量:1
  • 4[3]Howarth R J, Hilary B. A analogical representation of space and time. Image and Vision Computing, 1992, 10(7): 467~478 被引量:1
  • 5[4]Andre E, Herzog G, Rist T. On the simultaneous interpretation of real world image sequences and their natural language description: The system soccer. In: Proceedings of the ECAI-88, Munich, 1988. 449~454 被引量:1
  • 6[5]Schaefer K, Haag M, Theilmann W, Nagel H. Integration of image sequence evaluation and fuzzy metric temporal logic programming. In: Habel C, Brewka G, Nebel B eds. Advances in Artificial Intelligence. Lecture Notes in Computer Science,1303, New York:Springer, 1997. 301~312 被引量:1
  • 7[6]Brand M, Kettnaker V. Discovery and segmentation of activities in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 844~851 被引量:1
  • 8[7]Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition. Image and Vision Computing, 1996, 14(8): 609~615 被引量:1
  • 9[8]Johnson N, Galata A, Hogg D. The acquisition and use of interaction behaviour models. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Silver Spring, MD: IEEE Computer Society Press, 1998. 866~871 被引量:1
  • 10[9]Stauffer C, Eric W, Grimson L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~757 被引量:1

共引文献28

同被引文献13

  • 1Valera M, Velastin S A. Intelligent distributed surveillance sys- tems: A review [C]. Proceedings of the Vision, Image and Signal Processing, 2005; 192-204. 被引量:1
  • 2Hwang J R, KANG H Y, LI K J. Spatio-temporal similarity a- nalysis between trajectories on road networks [C]. Proceedings of the 24th International Conference on Perspectives in Concep- tual Modeling, 2005: 280-289. 被引量:1
  • 3WANG X G, TIEU K, Grimson E. Learning semantic scene models by trajectory analysis [G]. LNCS 3953.. Proceedings of the 9th European Conference on Computer, 2006: 110-123. 被引量:1
  • 4ZHANG Z, HUANG K, TAN T N. Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes [C]. Proceedings International Conference on Pattern Recog nition. Piscataway, N J: IEEE Press, 2006: 1135-1138. 被引量:1
  • 5FU Zhouyu, HU Weiming, TAN Tieniu. Similarity based ve- hicle trajectory clustering and anomaly detection [C]. Italy: Proceedings of the IEEE International Conference on Image Processing, 2005: 602-605. 被引量:1
  • 6Fashandi H, Moghaddam A M E. A new rotation invariant similarity measure for trajectories [C]. Finland: Proceedings of the IEEE International Symposium on Computational Intelli- gence in Robotics and Automation, 2005: 631-634. 被引量:1
  • 7Junejo I N, Foroosh H. Trajectory rectification and path modeling for video surveillance [C]. Proceedings of the IEEE International Conference on Computer Vision. Brazil IEEE Press, 2007: 1-7. 被引量:1
  • 8LIU Huaping, SUN Fuchun, HE Kezhong. Symmetry-aided particle filter for vehicle tracking [C]. Italy: IEEE Interna- tional Conference on Robotics and Automation, 2007: 4633-4638. 被引量:1
  • 9郝久月,李超,高磊,熊璋.智能监控场景中运动目标轨迹聚类算法[J].北京航空航天大学学报,2009,35(9):1083-1087. 被引量:7
  • 10潘奇明,周文辉,程咏梅.运动目标轨迹分类与识别[J].火力与指挥控制,2009,34(11):79-83. 被引量:9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部