期刊文献+

基于归一化编辑距离和谱聚类的轨迹模式学习方法 被引量:10

A Trajectory Pattern Learning Approach Based on the Normalized Edit Distance and Spectral Clustering Algorithm
下载PDF
导出
摘要 针对欧氏距离和Hausdorff距离等在描述目标运动轨迹差异性时度量不够准确的问题,提出一种基于归一化编辑距离和谱聚类的轨迹分布模式学习方法.首先对目标的运动轨迹进行矢量量化编码;然后采用归一化的编辑距离来度量轨迹编码序列之间的差异,得到归一化编辑距离矩阵;再通过该矩阵进行谱聚类来提取轨迹的分布模式;最后利用所提取的轨迹分布模式确定整条轨迹及其局部是否异常.通过仿真和真实场景的实验验证了该方法的有效性. For the inaccuracy problem of using Euclidean and Hausdorff distances to measure the trajectories' difference, a motion trajectory learning approach is developed based on the normalized edit distance and spectral clustering algorithm. Firstly, the trajectories are recoded through vector quantization. Then, a normalized edit distance is adopted to measure the difference among the trajectories. After that, the spectral clustering algorithm is applied to obtain the trajectories' distribution patterns based on the pair-wise distance matrix. Finally the learned patterns are used to detect the local and global anomaly. Experiments on synthetic and real world data sets demonstrate the effectiveness of our proposed approach to trajectory analysis and anomaly detection.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第6期753-758,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60472072) 教育部博士点基金(20040699034)
关键词 轨迹模式 归一化编辑距离 异常检测 trajectory pattern normalized edit distance anomaly detection
  • 相关文献

参考文献17

  • 1Hu W M, Tan T N, Wang L, et al. A survey on visual surveillance of object motion and behaviors [J]. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 2004, 34(3): 334-352 被引量:1
  • 2Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition[J]. Image and Vision Computing, 1996, 14(8): 609-615 被引量:1
  • 3Sumpter N, Bulpitt A. Learning spatio-temporal patterns for predicting object behaviour [J]. Image and Vision Computing, 2000, 18(9): 697-704 被引量:1
  • 4Fernyhough J, Cohn A G, Hogg D C. Constructing qualitative event models automatically from video input [J]. Image and Vision Computing, 2000, 18(9): 81-103 被引量:1
  • 5Stauffer C, Eric W, Grimson L. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747-753 被引量:1
  • 6胡卫明,谢丹,谭铁牛,沈俊.轨迹分布模式学习的层次自组织神经网络方法[J].计算机学报,2003,26(4):417-426. 被引量:15
  • 7Hu W M, Xie D, Tan T N, etal. Learning activity patterns using fuzzy self-organizing neural network [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2004, 34(3): 1618-1626 被引量:1
  • 8Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories [C] //Proceedings of the 18th International Conference on Data Engineering, San Jose, 2002:673-684 被引量:1
  • 9Buzan D, Sclaroff S, Kollios G. Extraction and clustering of motion trajectories in video [C] //Proceedings of the 17th International Conference on Pattern Recognition, London, 2004:521-524 被引量:1
  • 10Junejo I N, Javed O, Shah M. Multi feature path modeling for video surveillance [C]//Proceedings of the 17th International Conference on Pattern Recognition, London, 2004:716-719 被引量:1

二级参考文献33

  • 1[1]Collins T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):745~746 被引量:1
  • 2[2]Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences. Image and Vision Computing, 2000, 18(9): 105~135 被引量:1
  • 3[3]Howarth R J, Hilary B. A analogical representation of space and time. Image and Vision Computing, 1992, 10(7): 467~478 被引量:1
  • 4[4]Andre E, Herzog G, Rist T. On the simultaneous interpretation of real world image sequences and their natural language description: The system soccer. In: Proceedings of the ECAI-88, Munich, 1988. 449~454 被引量:1
  • 5[5]Schaefer K, Haag M, Theilmann W, Nagel H. Integration of image sequence evaluation and fuzzy metric temporal logic programming. In: Habel C, Brewka G, Nebel B eds. Advances in Artificial Intelligence. Lecture Notes in Computer Science,1303, New York:Springer, 1997. 301~312 被引量:1
  • 6[6]Brand M, Kettnaker V. Discovery and segmentation of activities in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 844~851 被引量:1
  • 7[7]Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition. Image and Vision Computing, 1996, 14(8): 609~615 被引量:1
  • 8[8]Johnson N, Galata A, Hogg D. The acquisition and use of interaction behaviour models. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Silver Spring, MD: IEEE Computer Society Press, 1998. 866~871 被引量:1
  • 9[9]Stauffer C, Eric W, Grimson L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~757 被引量:1
  • 10[10]Sumpter N, Bulpitt A. Learning spatio-temporal patterns for predicting object behavior. Image and Vision Computing, 2000, 18(9):697~704 被引量:1

共引文献21

同被引文献94

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部