期刊文献+

基于级联网络的短期电力负荷预测研究 被引量:3

Short-Term Load Forecasting Research of Electric Power System Based on Cascaded Network
下载PDF
导出
摘要 电力系统负荷预测通过对历史数据分析,预测未来需求,利用经典的Kohonen网络、Elman神经网络和粒子群优化算法建立级联网络预测模型,为了对电力系统短期精确预测,提出了处理非线性问题和解决负荷预测问题。对级联网络预测模型不但能够综合各种单一预测模型的优点,而且能够随时间的推移使结构不断变化,可以减少负荷预测的工作量。用三种神经网络模型进行短期电力负荷预测的仿真结果比较,验证了级联网络预测算法的有效性和良好的应用前景。 In this paper, a cascade network forecasting model is established using the classical Kohonen network, Elman network and the particle swarm optimization algorithm, which can solve the problems of non-linear and load forecasting. Not only can the cascade network model sum up the merits of kinds of single forecasting models, but also it can change the interior configuration, so it tallies with the character of electrical load well and reduces the workload of load forecasting. At the end of the paper, the forecasting results of three network models are compar, and the result shows that the cascade network forecasting model is very effective and has a good prospect.
出处 《计算机仿真》 CSCD 北大核心 2011年第1期311-314,共4页 Computer Simulation
基金 安徽省教育厅自然科学研究项目(KJ2009B035Z) 安徽工程科技学院青年基金(2008YQ024zd) 安徽省高校省级自然科学基金项目(KJ2008B204)
关键词 级联网络 短期负荷预测 粒子群优化 仿真 Cascaded network Short-term load forecasting Particle swarm optimization Simulation
  • 相关文献

参考文献8

二级参考文献33

共引文献116

同被引文献33

  • 1乔晶晶,潘宏侠.基于遗传算法优化神经网络的齿轮故障诊断[J].水电能源科学,2010,28(6):106-108. 被引量:13
  • 2凤权,汤斌,陈中碧.多粘芽孢杆菌发酵培养基优化及发酵特性研究[J].食品与发酵工业,2007,33(7):46-48. 被引量:8
  • 3Niu, D P, Wang F L, Zhang L L, et al. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression[ J]. Chemometrics and Intelligent Laboratory Systems, 2011, 105(1) : 125 -130. 被引量:1
  • 4Ge H W, Qian F, Liang Y C, et al. Identification and control of nonlinear systems by a dissimilation particle swarm optimization - based Elman neural network [ J ]. Nonlinear Analysis : Real World Applications, 2008, 9(4) : 1345 - 1360. 被引量:1
  • 5He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems [ J ]. Engineering Applications of Artificial Intelligence, 2007, 20 : 89 - 99. 被引量:1
  • 6Becker T, Enders T, Delgado A. Dynamic neural networks as a tool for the online optimization of industrial fermentation[ J ]. Bioprocess and Biosystems Engineering, 2002, 24 (6) : 51 - 56. 被引量:1
  • 7Kurt A, Oktay A B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks [J].Expert Systems with Applications, 2010, 37 (12) : 7986 - 7992. 被引量:1
  • 8Brunelli U, Piazza V, Pignato L, et al. Three hours ahead prevision of SO2 pollutant concentration using an Elman neural based forecaster[ J ]. Building and Environment, 2008, 43 (3) : 304 - 314. 被引量:1
  • 9Kelo S, Dudul S. A wavelet Elman neural network for short - term electrical load prediction under the influence of temperature [ J ]. International Journal of Electrical Power & Energy Systems, 2012, 43 (1) : 1063 - 1071. 被引量:1
  • 10Wu Q, Law R. An intelligent forecasting model based on robust wavelet v -support vector machine[J]. Expert Systems with Applications, 2011, 38(5): 4851 -4859. 被引量:1

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部