期刊文献+

基于加权极限学习机的异常轨迹检测算法 被引量:1

Trajectory Outliers Detection Algorithm Based on Weighted ELM
下载PDF
导出
摘要 针对现有异常轨迹检测中分类不平衡造成难以确定最优分类面的问题,提出一种基于加权极限学习机(ELM,Extreme Learning Machine)的异常轨迹检测算法。该算法采用加权ELM克服轨迹数据不平衡造成的分类面偏移,通过对正、负两类样本合理分配权重,并构造最优分类面获得较好的异常检测效果。仿真实验表明,加权ELM算法在训练速度,准确率,整体性能等方面均优于传统SVM和BP网络分类方法。 It is difficuh to find the optimal separating hyperplane caused by imbMance classification of the existing trajectory outlier detection algorithm, this paper proposes an algorithm to detect trajectory outliers by means of weighted extreme learning machine (ELM). This algorithm adopts the Weighted ELM to overcome the offset of separating hyperplane. Firstly, proper weight is set for positive and negative samples adaptively, and then the optimal separating hyperplane is constructed to get better effect for abnormal detection. The results of simulation experiments show that, in training speed, accuracy and overall performance, the weighted ELM algorithm is better than the traditional SVM and BP network classification method.
出处 《微处理机》 2014年第1期76-79,84,共5页 Microprocessors
关键词 异常检测 迹轨分析 极限学习机 Outliers detection Trajectory analysis Extreme Learning Machine
  • 相关文献

参考文献10

  • 1N Johnson, D Hogg. Learning tile distribution of object trajectories tot event recognition [ J ]. Image Vis. Comput. , 1996,14(8) :609 -615. 被引量:1
  • 2C Staufter,W Grimson. Learning patterns of activity using realtime tracking [ J ]. IEEE Trans on Pattern Anal. Mach. lntell. ,2000,22(8) :852-872. 被引量:1
  • 3JG Lee, J Hart, X Li. Trajectory Outlier Detection: A Partition - aml - Detect Framework [ C ]. Proc. cff the 2008 IEEE 24th Intl. Colff. on Data Engineering (ICDE) .2008 : 140 - 149. 被引量:1
  • 4C Piciarelli, Christian Micheloni, Gian Luca Foresti. Trajectory - Based Anomalous Event Detection [ J ]. IEEE Trans on Circuits And Systems For Video Technology, Novernber,2008,18 ( 11 ) : 1544 - 1554. 被引量:1
  • 5X Li, J Han, SKim. Motion - Alert: Automatic Anomaly Detection in Massive Moving Objects [ C. Pr. of the 4th 1EEE Intl. Conf. on Intelligence and Security lnformatics (IS]) ,2006 : 166 - 177. 被引量:1
  • 6M Gupta,Jing Gao,Charu C. Aggarwal and Jiawei Han. Outlier Detection for Temporal Data : A Survey [ J ]. IEEE Trans on Knowledge And Data Engeering, January,2013, 25(1) :1 -20. 被引量:1
  • 7Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification [ J 1. Systems, Man and Cybernetics, Part B : Cybernetics, IEEE Transactions on,2012,42(2) :513 -529. 被引量:1
  • 8P L Bartlett. The Sample Complexity of Pattern Classifica- tion with Neural Networks:The Size of the Weights is More Important than the Size of the Network [ J ]. 1EEE Trans on Information Theory, 1998,42(2) :525 -536. 被引量:1
  • 9Claudio Piciarelli. Matlab Trajectory Generator[ DB/OL]. Available :http ://avires. dimi. uniud, it/papers/trclust. 被引量:1
  • 10Arslan Basharat. Tracking Dataset [ DB/OL ]. Available: http ://eecs. ucf. edu/ arslan/surveillance. 被引量:1

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部